Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
David Hadka
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2013) 21 (2): 231–259.
Published: 01 May 2013
FIGURES
| View All (12)
Abstract
View article
PDF
This study introduces the Borg multi-objective evolutionary algorithm (MOEA) for many-objective, multimodal optimization. The Borg MOEA combines -dominance, a measure of convergence speed named -progress, randomized restarts, and auto-adaptive multioperator recombination into a unified optimization framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites demonstrates Borg meets or exceeds six state of the art MOEAs on the majority of the tested problems. The performance for each test problem is evaluated using a 1,000 point Latin hypercube sampling of each algorithm's feasible parameteri- zation space. The statistical performance of every sampled MOEA parameterization is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single algorithm; instead it represents a class of algorithms whose operators are adaptively selected based on the problem. The adaptive discovery of key operators is of particular importance for benchmarking how variation operators enhance search for complex many-objective problems.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (3): 423–452.
Published: 01 September 2012
FIGURES
| View All (13)
Abstract
View article
PDF
The growing popularity of multiobjective evolutionary algorithms (MOEAs) for solving many-objective problems warrants the careful investigation of their search controls and failure modes. This study contributes a new diagnostic assessment framework for rigorously evaluating the effectiveness, reliability, efficiency, and controllability of MOEAs as well as identifying their search controls and failure modes. The framework is demonstrated using the recently introduced Borg MOEA, -NSGA-II, -MOEA, IBEA, OMOPSO, GDE3, MOEA/D, SPEA2, and NSGA-II on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites. The diagnostic framework exploits Sobol's variance decomposition to provide guidance on the algorithms’ non-separable, multi-parameter controls when performing a many-objective search. This study represents one of the most comprehensive empirical assessments of MOEAs ever completed.