Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Eckart Zitzler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2011) 19 (1): 45–76.
Published: 01 March 2011
Abstract
View article
PDF
In the field of evolutionary multi-criterion optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance: whenever a Pareto set approximation entirely dominates another one, then the indicator value of the dominant set will also be better. This property is of high interest and relevance for problems involving a large number of objective functions. However, the high computational effort required for hypervolume calculation has so far prevented the full exploitation of this indicator's potential; current hypervolume-based search algorithms are limited to problems with only a few objectives. This paper addresses this issue and proposes a fast search algorithm that uses Monte Carlo simulation to approximate the exact hypervolume values. The main idea is not that the actual indicator values are important, but rather that the rankings of solutions induced by the hypervolume indicator. In detail, we present HypE, a hypervolume estimation algorithm for multi-objective optimization, by which the accuracy of the estimates and the available computing resources can be traded off; thereby, not only do many-objective problems become feasible with hypervolume-based search, but also the runtime can be flexibly adapted. Moreover, we show how the same principle can be used to statistically compare the outcomes of different multi-objective optimizers with respect to the hypervolume—so far, statistical testing has been restricted to scenarios with few objectives. The experimental results indicate that HypE is highly effective for many-objective problems in comparison to existing multi-objective evolutionary algorithms. HypE is available for download at http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/ .
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (2): 135–166.
Published: 01 June 2009
Abstract
View article
PDF
Many-objective problems represent a major challenge in the field of evolutionary multiobjective optimization—in terms of search efficiency, computational cost, decision making, visualization, and so on. This leads to various research questions, in particular whether certain objectives can be omitted in order to overcome or at least diminish the difficulties that arise when many, that is, more than three, objective functions are involved. This study addresses this question from different perspectives. First, we investigate how adding or omitting objectives affects the problem characteristics and propose a general notion of conflict between objective sets as a theoretical foundation for objective reduction. Second, we present both exact and heuristic algorithms to systematically reduce the number of objectives, while preserving as much as possible of the dominance structure of the underlying optimization problem. Third, we demonstrate the usefulness of the proposed objective reduction method in the context of both decision making and search for a radar waveform application as well as for well-known test functions.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2002) 10 (3): 263–282.
Published: 01 September 2002
Abstract
View article
PDF
Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multiobjective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the Pareto-optimal set with a widely spread distribution of solutions. However, none of the multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the true Pareto-optimal solutions with a wide diversity among the solutions. In this paper, we discuss why a number of earlier MOEAs do not have such properties. Based on the concept of ɛ-dominance, new archiving strategies are proposed that overcome this fundamental problem and provably lead to MOEAs that have both the desired convergence and distribution properties. A number of modifications to the baseline algorithm are also suggested. The concept of ɛ-dominance introduced in this paper is practical and should make the proposed algorithms useful to researchers and practitioners alike.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2000) 8 (2): 173–195.
Published: 01 June 2000
Abstract
View article
PDF
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.