Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Giomara Lárraga
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation 1–39.
Published: 14 January 2025
Abstract
View article
PDF
Interactive methods support decision-makers in finding the most preferred solution for multiobjective optimization problems, where multiple conflicting objective functions must be optimized simultaneously. These methods let a decision-maker provide preference information iteratively during the solution process to find solutions of interest, allowing them to learn about the trade-offs in the problem and the feasibility of the preferences. Several interactive evolutionary multiobjective optimization methods have been proposed in the literature. In the evolutionary computation community, the so-called decomposition-basedmethods have been increasingly popular because of their good performance in problems with many objective functions. They decompose the multiobjective optimization problem into multiple sub-problems to be solved collaboratively. Various interactive versions of decomposition-based methods have been proposed. However, most of them do not consider the desirable properties of real interactive solution processes, such as avoiding imposing a high cognitive burden on the decision-maker, allowing them to decide when to interact with the method, and supporting them in selecting a final solution. This paper reviews interactive evolutionary decomposition-based multiobjective optimization methods and different methodologies utilized to incorporate interactivity in them. Additionally, desirable properties of interactive decomposition-based multiobjective evolutionary optimization methods are identified, aiming to make them easier to be applied in real-world problems.