Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
I. Moser
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2019) 27 (2): 267–289.
Published: 01 June 2019
FIGURES
| View All (6)
Abstract
View article
PDF
The notion and characterisation of fitness landscapes has helped us understand the performance of heuristic algorithms on complex optimisation problems. Many practical problems, however, are constrained, and when significant areas of the search space are infeasible, researchers have intuitively resorted to a variety of constraint-handling techniques intended to help the algorithm manoeuvre through infeasible areas and toward feasible regions of better fitness. It is clear that providing constraint-related feedback to the algorithm to influence its choice of solutions overlays the violation landscape with the fitness landscape in unpredictable ways whose effects on the algorithm cannot be directly measured. In this work, we apply metrics of violation landscapes to continuous and combinatorial problems to characterise them. We relate this information to the relative performance of six well-known constraint-handling techniques to demonstrate how some properties of constrained landscapes favour particular constraint-handling approaches. For the problems with sampled feasible solutions, a bi-objective approach was the best performing approach overall, but other techniques performed better on problems with the most disjoint feasible areas. For the problems with no measurable feasibility, a feasibility ranking approach was the best performing approach overall, but other techniques performed better when the correlation between fitness values and the level of constraint violation was high.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2017) 25 (3): 407–437.
Published: 01 September 2017
Abstract
View article
PDF
Complex combinatorial problems are most often optimised with heuristic solvers, which usually deliver acceptable results without any indication of the quality obtained. Recently, predictive diagnostic optimisation was proposed as a means of characterising the fitness landscape while optimising a combinatorial problem. The scalars produced by predictive diagnostic optimisation appear to describe the difficulty of the problem with relative reliability. In this study, we record more scalars that may be helpful in determining problem difficulty during the optimisation process and analyse these in combination with other well-known landscape descriptors by using exploratory factor analysis on four landscapes that arise from different search operators, applied to a varied set of quadratic assignment problem instances. Factors are designed to capture properties by combining the collinear variances of several variables. The extracted factors can be interpreted as the features of landscapes detected by the variables, but disappoint in their weak correlations with the result quality achieved by the optimiser, which we regard as the most reliable indicator of difficulty available. It appears that only the prediction error of predictive diagnostic optimisation has a strong correlation with the quality of the results produced, followed by a medium correlation of the fitness distance correlation of the local optima.