Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Ingo Wegener
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2005) 13 (4): 413–440.
Published: 01 December 2005
Abstract
View article
PDF
Evolutionary algorithms (EAs) generally come with a large number of parameters that have to be set before the algorithm can be used. Finding appropriate settings is a diffi- cult task. The influence of these parameters on the efficiency of the search performed by an evolutionary algorithm can be very high. But there is still a lack of theoretically justified guidelines to help the practitioner find good values for these parameters. One such parameter is the offspring population size. Using a simplified but still realistic evolutionary algorithm, a thorough analysis of the effects of the offspring population size is presented. The result is a much better understanding of the role of offspring population size in an EA and suggests a simple way to dynamically adapt this parameter when necessary.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (1998) 6 (2): 185–196.
Published: 01 June 1998
Abstract
View article
PDF
Evolutionary algorithms (EAs) are heuristic randomized algorithms which, by many impressive experiments, have been proven to behave quite well for optimization problems of various kinds. In this paper a rigorous theoretical complexity analysis of the (1 + 1) evolutionary algorithm for separable functions with Boolean inputs is given. Different mutation rates are compared, and the use of the crossover operator is investigated. The main contribution is not the result that the expected run time of the (1 + 1) evolutionary algorithm is Θ( n ln n ) for separable functions with n variables but the methods by which this result can be proven rigorously.