Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Ioannis Giagkiozis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2014) 22 (4): 651–678.
Published: 01 December 2014
FIGURES
| View All (25)
Abstract
View article
PDF
The set of available multi-objective optimisation algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However, this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult—mainly due to the computational cost—to use a population large enough to ensure the likelihood of obtaining a solution close to the DM's preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimisation algorithm for two-objective and three-objective problem instances.