Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Jakob Bossek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2024) 32 (2): 143–175.
Published: 03 June 2024
FIGURES
Abstract
View article
PDF
We contribute to the efficient approximation of the Pareto-set for the classical NP -hard multiobjective minimum spanning tree problem (moMST) adopting evolutionary computation. More precisely, by building upon preliminary work, we analyze the neighborhood structure of Pareto-optimal spanning trees and design several highly biased sub-graph-based mutation operators founded on the gained insights. In a nutshell, these operators replace (un)connected sub-trees of candidate solutions with locally optimal sub-trees. The latter (biased) step is realized by applying Kruskal's single-objective MST algorithm to a weighted sum scalarization of a sub-graph. We prove runtime complexity results for the introduced operators and investigate the desirable Pareto-beneficial property. This property states that mutants cannot be dominated by their parent. Moreover, we perform an extensive experimental benchmark study to showcase the operator's practical suitability. Our results confirm that the sub-graph-based operators beat baseline algorithms from the literature even with severely restricted computational budget in terms of function evaluations on four different classes of complete graphs with different shapes of the Pareto-front.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2018) 26 (4): 597–620.
Published: 01 December 2018
FIGURES
| View All (6)
Abstract
View article
PDF
The Travelling Salesperson Problem (TSP) is one of the best-studied NP-hard problems. Over the years, many different solution approaches and solvers have been developed. For the first time, we directly compare five state-of-the-art inexact solvers—namely, LKH, EAX, restart variants of those, and MAOS—on a large set of well-known benchmark instances and demonstrate complementary performance, in that different instances may be solved most effectively by different algorithms. We leverage this complementarity to build an algorithm selector, which selects the best TSP solver on a per-instance basis and thus achieves significantly improved performance compared to the single best solver, representing an advance in the state of the art in solving the Euclidean TSP. Our in-depth analysis of the selectors provides insight into what drives this performance improvement.