Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Jonathan Rowe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2006) 14 (1): 87–118.
Published: 01 March 2006
Abstract
View article
PDF
The frequency with which various elements of the search space of a given evolutionary algorithm are sampled is affected by the family of recombination (reproduction) operators. The original Geiringer theorem tells us the limiting frequency of occurrence of a given individual under repeated application of crossover alone for the classical genetic algorithm. Recently, Geiringer's theorem has been generalized to include the case of linear GP with homologous crossover (which can also be thought of as a variable length GA). In the current paper we prove a general theorem which tells us that under rather mild conditions on a given evolutionary algorithm, call it A , the stationary distribution of a certain Markov chain of populations in the absence of selection is unique and uniform. This theorem not only implies the already existing versions of Geiringer's theorem, but also provides a recipe of how to obtain similar facts for a rather wide class of evolutionary algorithms. The techniques which are used to prove this theorem involve a classical fact about random walks on a group and may allow us to compute and/or estimate the eigenvalues of the corresponding Markov transition matrix which is directly related to the rate of convergence towards the unique limiting distribution.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2004) 12 (1): 47–76.
Published: 01 January 2004
Abstract
View article
PDF
Representations are formalized as encodings that map the search space to the vertex set of a graph. We define the notion of bit equivalent encodings and show that for such encodings the corresponding Walsh coefficients are also conserved. We focus on Gray codes as particular types of encoding and present a review of properties related to the use of Gray codes. Gray codes are widely used in conjunction with genetic algorithms and bit-climbing algorithms for parameter optimization problems. We present new convergence proofs for a special class of unimodal functions; the proofs show that a steepest ascent bit climber using any reflected Gray code representation reaches the global optimum in a number of steps that is linear with respect to the encoding size. There are in fact many different Gray codes. Shifting is defined as a mechanism for dynamically switching from one Gray code representation to another in order to escape local optima. Theoretical results that substantially improve our understanding of the Gray codes and the shifting mechanism are presented. New proofs also shed light on the number of unique Gray code neighborhoods accessible via shifting and on how neighborhood structure changes during shifting. We show that shifting can improve the performance of both a local search algorithm as well as one of the best genetic algorithms currently available.