Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Julian F. Miller
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2016) 24 (4): 667–694.
Published: 01 December 2016
Abstract
View article
PDF
The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2011) 19 (3): 469–523.
Published: 01 September 2011
Abstract
View article
PDF
Although artificial neural networks have taken their inspiration from natural neurological systems, they have largely ignored the genetic basis of neural functions. Indeed, evolutionary approaches have mainly assumed that neural learning is associated with the adjustment of synaptic weights. The goal of this paper is to use evolutionary approaches to find suitable computational functions that are analogous to natural sub-components of biological neurons and demonstrate that intelligent behavior can be produced as a result of this additional biological plausibility. Our model allows neurons, dendrites, and axon branches to grow or die so that synaptic morphology can change and affect information processing while solving a computational problem. The compartmental model of a neuron consists of a collection of seven chromosomes encoding distinct computational functions inside the neuron. Since the equivalent computational functions of neural components are very complex and in some cases unknown, we have used a form of genetic programming known as Cartesian genetic programming (CGP) to obtain these functions. We start with a small random network of soma, dendrites, and neurites that develops during problem solving by repeatedly executing the seven chromosomal programs that have been found by evolution. We have evaluated the learning potential of this system in the context of a well-known single agent learning problem, known as Wumpus World. We also examined the harder problem of learning in a competitive environment for two antagonistic agents, in which both agents are controlled by independent CGP computational networks (CGPCN). Our results show that the agents exhibit interesting learning capabilities.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2000) 8 (1): 31–60.
Published: 01 March 2000
Abstract
View article
PDF
Various techniques for statistical analysis of the structure of fitness landscapes have been proposed. An important feature of these techniques is that they study the ruggedness of landscapes by measuring their correlation characteristics. This paper proposes a new information analysis of fitness landscapes. The underlying idea is to consider a fitness landscape as an ensemble of objects that are related to the fitness of neighboring points. Three information characteristics of the ensemble are defined and studied. They are termed: information content , partial information content , and information stability . The information characteristics of a range of landscapes with known correlation features are analyzed in an attempt to reveal the advantages of the information analysis. We show that the proposed analysis is an appropriate tool for investigating the structure of fitness landscapes.