Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Julian Molina
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (3): 411–436.
Published: 01 September 2009
Abstract
View articletitled, A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization
View
PDF
for article titled, A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization
In this paper, we discuss the idea of incorporating preference information into evolutionary multi-objective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of his or her reference point consisting of desirable aspiration levels for objective functions. The information is used in an evolutionary algorithm to generate a new population by combining the fitness function and an achievement scalarizing function. In multi-objective optimization, achievement scalarizing functions are widely used to project a given reference point into the Pareto optimal set. In our approach, the next population is thus more concentrated in the area where more preferred alternatives are assumed to lie and the whole Pareto optimal set does not have to be generated with equal accuracy. The approach is demonstrated by numerical examples.
Journal Articles
Pareto-adaptive ε-dominance
UnavailablePublisher: Journals Gateway
Evolutionary Computation (2007) 15 (4): 493–517.
Published: 01 December 2007
Abstract
View articletitled, Pareto-adaptive ε-dominance
View
PDF
for article titled, Pareto-adaptive ε-dominance
Efficiency has become one of the main concerns in evolutionary multiobjective optimization during recent years. One of the possible alternatives to achieve a faster convergence is to use a relaxed form of Pareto dominance that allows us to regulate the granularity of the approximation of the Pareto front that we wish to achieve. One such relaxed forms of Pareto dominance that has become popular in the last few years is ε-dominance, which has been mainly used as an archiving strategy in some multiobjective evolutionary algorithms. Despite its advantages, ε-dominance has some limitations. In this paper, we propose a mechanism that can be seen as a variant of ε-dominance, which we call Pareto-adaptive ε-dominance ( pa ε-dominance). Our proposed approach tries to overcome the main limitation of ε-dominance: the loss of several nondominated solutions from the hypergrid adopted in the archive because of the way in which solutions are selected within each box.