Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Jun He
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation 1–25.
Published: 05 August 2024
Abstract
View article
PDF
The fitness level method is a popular tool for analyzing the hitting time of elitist evolutionary algorithms. Its idea is to divide the search space into multiple fitness levels and estimate lower and upper bounds on the hitting time using transition probabilities between fitness levels. However, the lower bound generated by this method is often loose. An open question regarding the fitness level method is what are the tightest lower and upper time bounds that can be constructed based on transition probabilities between fitness levels. To answer this question, we combine drift analysis with fitness levels and define the tightest bound problem as a constrained multiobjective optimization problem subject to fitness levels. The tightest metric bounds by fitness levels are constructed and proven for the first time. Then linear bounds are derived from metric bounds and a framework is established that can be used to develop different fitness level methods for different types of linear bounds. The framework is generic and promising, as it can be used to draw tight time bounds on both fitness landscapes with and without shortcuts. This is demonstrated in the example of the (1 + 1) EA maximizing the TwoMax1 function.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2019) 27 (2): 195–228.
Published: 01 June 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Studying coevolutionary systems in the context of simplified models (i.e., games with pairwise interactions between coevolving solutions modeled as self plays) remains an open challenge since the rich underlying structures associated with pairwise-comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problems that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modeled as a specific type of Markov chains—random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provides the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled manner.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2010) 18 (4): 617–633.
Published: 01 December 2010
Abstract
View article
PDF
The main aim of randomized search heuristics is to produce good approximations of optimal solutions within a small amount of time. In contrast to numerous experimental results, there are only a few theoretical explorations on this subject. We consider the approximation ability of randomized search heuristics for the class of covering problems and compare single-objective and multi-objective models for such problems. For the VertexCover problem, we point out situations where the multi-objective model leads to a fast construction of optimal solutions while in the single-objective case, no good approximation can be achieved within the expected polynomial time. Examining the more general SetCover problem, we show that optimal solutions can be approximated within a logarithmic factor of the size of the ground set, using the multi-objective approach, while the approximation quality obtainable by the single-objective approach in expected polynomial time may be arbitrarily bad.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (1): 3–19.
Published: 01 March 2009
Abstract
View article
PDF
Hybrid methods are very popular for solving problems from combinatorial optimization. In contrast, the theoretical understanding of the interplay of different optimization methods is rare. In this paper, we make a first step into the rigorous analysis of such combinations for combinatorial optimization problems. The subject of our analyses is the vertex cover problem for which several approximation algorithms have been proposed. We point out specific instances where solutions can (or cannot) be improved by the search process of a simple evolutionary algorithm in expected polynomial time.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2007) 15 (4): 435–443.
Published: 01 December 2007
Abstract
View article
PDF
Various methods have been defined to measure the hardness of a fitness function for evolutionary algorithms and other black-box heuristics. Examples include fitness landscape analysis, epistasis, fitness-distance correlations etc., all of which are relatively easy to describe. However, they do not always correctly specify the hardness of the function. Some measures are easy to implement, others are more intuitive and hard to formalize. This paper rigorously defines difficulty measures in black-box optimization and proposes a classification. Different types of realizations of such measures are studied, namely exact and approximate ones. For both types of realizations, it is proven that predictive versions that run in polynomial time in general do not exist unless certain complexity-theoretical assumptions are wrong.