Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Kenneth O. Stanley
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2011) 19 (3): 373–403.
Published: 01 September 2011
Abstract
View articletitled, Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space
View
PDF
for article titled, Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space
For domains in which fitness is subjective or difficult to express formally, interactive evolutionary computation (IEC) is a natural choice. It is possible that a collaborative process combining feedback from multiple users can improve the quality and quantity of generated artifacts. Picbreeder, a large-scale online experiment in collaborative interactive evolution (CIE), explores this potential. Picbreeder is an online community in which users can evolve and share images, and most importantly, continue evolving others' images. Through this process of branching from other images, and through continually increasing image complexity made possible by the underlying neuroevolution of augmenting topologies (NEAT) algorithm, evolved images proliferate unlike in any other current IEC system. This paper discusses not only the strengths of the Picbreeder approach, but its challenges and shortcomings as well, in the hope that lessons learned will inform the design of future CIE systems.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2011) 19 (2): 189–223.
Published: 01 June 2011
Abstract
View articletitled, Abandoning Objectives: Evolution Through the Search for Novelty Alone
View
PDF
for article titled, Abandoning Objectives: Evolution Through the Search for Novelty Alone
In evolutionary computation, the fitness function normally measures progress toward an objective in the search space, effectively acting as an objective function. Through deception, such objective functions may actually prevent the objective from being reached. While methods exist to mitigate deception, they leave the underlying pathology untreated: Objective functions themselves may actively misdirect search toward dead ends. This paper proposes an approach to circumventing deception that also yields a new perspective on open-ended evolution. Instead of either explicitly seeking an objective or modeling natural evolution to capture open-endedness, the idea is to simply search for behavioral novelty. Even in an objective-based problem, such novelty search ignores the objective. Because many points in the search space collapse to a single behavior, the search for novelty is often feasible. Furthermore, because there are only so many simple behaviors, the search for novelty leads to increasing complexity. By decoupling open-ended search from artificial life worlds, the search for novelty is applicable to real world problems. Counterintuitively, in the maze navigation and biped walking tasks in this paper, novelty search significantly outperforms objective-based search, suggesting the strange conclusion that some problems are best solved by methods that ignore the objective. The main lesson is the inherent limitation of the objective-based paradigm and the unexploited opportunity to guide search through other means.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2002) 10 (2): 99–127.
Published: 01 June 2002
Abstract
View articletitled, Evolving Neural Networks through Augmenting Topologies
View
PDF
for article titled, Evolving Neural Networks through Augmenting Topologies
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is signicantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.