Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Kent McClymont
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (1): 1–26.
Published: 01 March 2012
FIGURES
| View All (21)
Abstract
View article
PDF
In recent years an increasing number of real-world many-dimensional optimisation problems have been identified across the spectrum of research fields. Many popular evolutionary algorithms use non-dominance as a measure for selecting solutions for future generations. The process of sorting populations into non-dominated fronts is usually the controlling order of computational complexity and can be expensive for large populations or for a high number of objectives. This paper presents two novel methods for non-dominated sorting: deductive sort and climbing sort. The two new methods are compared to the fast non-dominated sort of NSGA-II and the non-dominated rank sort of the omni-optimizer. The results demonstrate the improved efficiencies of the deductive sort and the reductions in comparisons that can be made when applying inferred dominance relationships defined in this paper.