Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-5 of 5
Larry Bull
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2016) 24 (1): 89–111.
Published: 01 March 2016
FIGURES
| View All (13)
Abstract
View article
PDF
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2014) 22 (1): 79–103.
Published: 01 March 2014
FIGURES
| View All (18)
Abstract
View article
PDF
Neuromorphic computing is a brainlike information processing paradigm that requires adaptive learning mechanisms. A spiking neuro-evolutionary system is used for this purpose; plastic resistive memories are implemented as synapses in spiking neural networks. The evolutionary design process exploits parameter self-adaptation and allows the topology and synaptic weights to be evolved for each network in an autonomous manner. Variable resistive memories are the focus of this research; each synapse has its own conductance profile which modifies the plastic behaviour of the device and may be altered during evolution. These variable resistive networks are evaluated on a noisy robotic dynamic-reward scenario against two static resistive memories and a system containing standard connections only. The results indicate that the extra behavioural degrees of freedom available to the networks incorporating variable resistive memories enable them to outperform the comparative synapse types.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2013) 21 (3): 361–387.
Published: 01 September 2013
FIGURES
| View All (20)
Abstract
View article
PDF
A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2003) 11 (3): 299–336.
Published: 01 September 2003
Abstract
View article
PDF
Many real-world problems are not conveniently expressed using the ternary representation typically used by Learning Classifier Systems and for such problems an interval-based representation is preferable. We analyse two interval-based representations recently proposed for XCS, together with their associated operators and find evidence of considerable representational and operator bias. We propose a new interval-based representation that is more straightforward than the previous ones and analyse its bias. The representations presented and their analysis are also applicable to other Learning Classifier System architectures. We discuss limitations of the real multiplexer problem, a benchmark problem used for Learning Classifier Systems that have a continuous-valued representation, and propose a new test problem, the checkerboard problem, that matches many classes of real-world problem more closely than the real multiplexer. Representations and operators are compared using both the real multiplexer and checkerboard problems and we find that representational, operator and sampling bias all affect the performance of XCS in continuous-valued environments.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2002) 10 (2): 185–205.
Published: 01 June 2002
Abstract
View article
PDF
Learning classifier systems traditionally use genetic algorithms to facilitate rule discovery, where rule fitness is payoff based. Current research has shifted to the use of accuracy-based fitness. This paper re-examines the use of a particular payoff-based learning classifier system—ZCS. By using simple difference equation models of ZCS, we show that this system is capable of optimal performance subject to appropriate parameter settings. This is demonstrated for both single- and multistep tasks. Optimal performance of ZCS in well-known, multistep maze tasks is then presented to support the findings from the models.