Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Licheng Jiao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2021) 29 (4): 491–519.
Published: 01 December 2021
Abstract
View article
PDF
Dynamic multiobjective optimization deals with simultaneous optimization of multiple conflicting objectives that change over time. Several response strategies for dynamic optimization have been proposed, which do not work well for all types of environmental changes. In this article, we propose a new dynamic multiobjective evolutionary algorithm based on objective space decomposition, in which the maxi-min fitness function is adopted for selection and a self-adaptive response strategy integrating a number of different response strategies is designed to handle unknown environmental changes. The self-adaptive response strategy can adaptively select one of the strategies according to their contributions to the tracking performance in the previous environments. Experimental results indicate that the proposed algorithm is competitive and promising for solving different DMOPs in the presence of unknown environmental changes. Meanwhile, the proposed algorithm is applied to solve the parameter tuning problem of a proportional integral derivative (PID) controller of a dynamic system, obtaining better control effect.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2021) 29 (2): 269–304.
Published: 01 June 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Decomposition-based evolutionary algorithms have been quite successful in dealing with multiobjective optimization problems. Recently, more and more researchers attempt to apply the decomposition approach to solve many-objective optimization problems. A many-objective evolutionary algorithm based on decomposition with correlative selection mechanism (MOEA/D-CSM) is also proposed to solve many-objective optimization problems in this article. Since MOEA/D-SCM is based on a decomposition approach which adopts penalty boundary intersection (PBI), a set of reference points must be generated in advance. Thus, a new concept related to the set of reference points is introduced first, namely, the correlation between an individual and a reference point. Thereafter, a new selection mechanism based on the correlation is designed and called correlative selection mechanism. The correlative selection mechanism finds its correlative individuals for each reference point as soon as possible so that the diversity among population members is maintained. However, when a reference point has two or more correlative individuals, the worse correlative individuals may be removed from a population so that the solutions can be ensured to move toward the Pareto-optimal front. In a comprehensive experimental study, we apply MOEA/D-CSM to a number of many-objective test problems with 3 to 15 objectives and make a comparison with three state-of-the-art many-objective evolutionary algorithms, namely, NSGA-III, MOEA/D, and RVEA. Experimental results show that the proposed MOEA/D-CSM can produce competitive results on most of the problems considered in this study.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2015) 23 (1): 69–100.
Published: 01 March 2015
FIGURES
| View All (22)
Abstract
View article
PDF
There can be a complicated mapping relation between decision variables and objective functions in multi-objective optimization problems (MOPs). It is uncommon that decision variables influence objective functions equally. Decision variables act differently in different objective functions. Hence, often, the mapping relation is unbalanced, which causes some redundancy during the search in a decision space. In response to this scenario, we propose a novel memetic (multi-objective) optimization strategy based on dimension reduction in decision space (DRMOS). DRMOS firstly analyzes the mapping relation between decision variables and objective functions. Then, it reduces the dimension of the search space by dividing the decision space into several subspaces according to the obtained relation. Finally, it improves the population by the memetic local search strategies in these decision subspaces separately. Further, DRMOS has good portability to other multi-objective evolutionary algorithms (MOEAs); that is, it is easily compatible with existing MOEAs. In order to evaluate its performance, we embed DRMOS in several state of the art MOEAs to facilitate our experiments. The results show that DRMOS has the advantage in terms of convergence speed, diversity maintenance, and portability when solving MOPs with an unbalanced mapping relation between decision variables and objective functions.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2014) 22 (2): 231–264.
Published: 01 June 2014
FIGURES
| View All (19)
Abstract
View article
PDF
Recently, MOEA/D (multi-objective evolutionary algorithm based on decomposition) has achieved great success in the field of evolutionary multi-objective optimization and has attracted a lot of attention. It decomposes a multi-objective optimization problem (MOP) into a set of scalar subproblems using uniformly distributed aggregation weight vectors and provides an excellent general algorithmic framework of evolutionary multi-objective optimization. Generally, the uniformity of weight vectors in MOEA/D can ensure the diversity of the Pareto optimal solutions, however, it cannot work as well when the target MOP has a complex Pareto front (PF; i.e., discontinuous PF or PF with sharp peak or low tail). To remedy this, we propose an improved MOEA/D with adaptive weight vector adjustment (MOEA/D-AWA). According to the analysis of the geometric relationship between the weight vectors and the optimal solutions under the Chebyshev decomposition scheme, a new weight vector initialization method and an adaptive weight vector adjustment strategy are introduced in MOEA/D-AWA. The weights are adjusted periodically so that the weights of subproblems can be redistributed adaptively to obtain better uniformity of solutions. Meanwhile, computing efforts devoted to subproblems with duplicate optimal solution can be saved. Moreover, an external elite population is introduced to help adding new subproblems into real sparse regions rather than pseudo sparse regions of the complex PF, that is, discontinuous regions of the PF. MOEA/D-AWA has been compared with four state of the art MOEAs, namely the original MOEA/D, Adaptive-MOEA/D, -MOEA/D, and NSGA-II on 10 widely used test problems, two newly constructed complex problems, and two many-objective problems. Experimental results indicate that MOEA/D-AWA outperforms the benchmark algorithms in terms of the IGD metric, particularly when the PF of the MOP is complex.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (1): 131–134.
Published: 01 March 2009
Abstract
View article
PDF
In this study, we analyze the experimental results in Gong et al. (2008), and find that the box plots of the coverage metric in solving the five three-objective problems are wrong. The corresponding corrected box plots are presented. The corrected results are still consistent with the original conclusions.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2008) 16 (2): 225–255.
Published: 01 June 2008
Abstract
View article
PDF
Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective optimization by using a novel nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators, and elitism. The unique selection technique of NNIA only selects minority isolated nondominated individuals in the population. The selected individuals are then cloned proportionally to their crowding-distance values before heuristic search. By using the nondominated neighbor-based selection and proportional cloning, NNIA pays more attention to the less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II, SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and three low-dimensional problems. The statistical analysis based on three performance metrics including the coverage of two sets, the convergence metric, and the spacing, show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems. The empirical study on NNIA's scalability with respect to the number of objectives shows that the new algorithm scales well along the number of objectives.