Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Lino Costa
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2003) 11 (4): 417–438.
Published: 01 December 2003
Abstract
View article
PDF
Almost all approaches to multiobjective optimization are based on Genetic Algorithms (GAs), and implementations based on Evolution Strategies (ESs) are very rare. Thus, it is crucial to investigate how ESs can be extended to multiobjective optimization, since they have, in the past, proven to be powerful single objective optimizers. In this paper, we present a new approach to multiobjective optimization, based on ESs. We call this approach the Multiobjective Elitist Evolution Strategy (MEES) as it incorporates several mechanisms, like elitism, that improve its performance. When compared with other algorithms, MEES shows very promising results in terms of performance.