Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Marco Tomassini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2005) 13 (2): 213–239.
Published: 01 June 2005
Abstract
View article
PDF
We present an approach to genetic programming difficulty based on a statistical study of program fitness landscapes. The fitness distance correlation is used as an indicator of problem hardness and we empirically show that such a statistic is adequate in nearly all cases studied here. However, fitness distance correlation has some known problems and these are investigated by constructing an artificial landscape for which the correlation gives contradictory indications. Although our results confirm the usefulness of fitness distance correlation, we point out its shortcomings and give some hints for improvement in assessing problem hardness in genetic programming.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (1999) 7 (3): 255–274.
Published: 01 September 1999
Abstract
View article
PDF
Parallel evolutionary algorithms, over the past few years, have proven empirically worthwhile, but there seems to be a lack of understanding of their workings. In this paper we concentrate on cellular (fine-grained) models, our objectives being: (1) to introduce a suite of statistical measures, both at the genotypic and phenotypic levels, which are useful for analyzing the workings of cellular evolutionary algorithms; and (2) to demonstrate the application and utility of these measures on a specific example—the cellular programming evolutionary algorithm. The latter is used to evolve solutions to three distinct (hard) problems in the cellular-automata domain: density, synchronization, and random number generation. Applying our statistical measures, we are able to identify a number of trends common to all three problems (which may represent intrinsic properties of the algorithm itself, as well as a host of problem-specific features. We find that the evolutionary algorithm tends to undergo a number of phases which we are able to quantitatively delimit. The results obtained lead us to believe that the measures presented herein may prove useful in the general case of analyzing fine-grained evolutionary algorithms.