Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Martin V. Butz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2014) 22 (1): 139–158.
Published: 01 March 2014
FIGURES
| View All (32)
Abstract
View article
PDF
It has been shown previously that the control of a robot arm can be efficiently learned using the XCSF learning classifier system, which is a nonlinear regression system based on evolutionary computation. So far, however, the predictive knowledge about how actual motor activity changes the state of the arm system has not been exploited. In this paper, we utilize the forward velocity kinematics knowledge of XCSF to alleviate the negative effect of noisy sensors for successful learning and control. We incorporate Kalman filtering for estimating successive arm positions, iteratively combining sensory readings with XCSF-based predictions of hand position changes over time. The filtered arm position is used to improve both trajectory planning and further learning of the forward velocity kinematics. We test the approach on a simulated kinematic robot arm model. The results show that the combination can improve learning and control performance significantly. However, it also shows that variance estimates of XCSF prediction may be underestimated, in which case self-delusional spiraling effects can hinder effective learning. Thus, we introduce a heuristic parameter, which can be motivated by theory, and which limits the influence of XCSF's predictions on its own further learning input. As a result, we obtain drastic improvements in noise tolerance, allowing the system to cope with more than 10 times higher noise levels.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2006) 14 (3): 345–380.
Published: 01 September 2006
Abstract
View article
PDF
Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2003) 11 (3): 239–277.
Published: 01 September 2003
Abstract
View article
PDF
The evolutionary learning mechanism in XCS strongly depends on its accuracy-based fitness approach. The approach is meant to result in an evolutionary drive from classifiers of low accuracy to those of high accuracy. Since, given inaccuracy, lower specificity often corresponds to lower accuracy, fitness pressure most often also results in a pressure towards higher specificity. Moreover, fitness pressure should cause the evolutionary process to be innovative in that it combines low-order building blocks of lower accurate classifiers, to higher-order building blocks with higher accuracy. This paper investigates how, when, and where accuracy-based fitness results in successful rule evolution in XCS. Along the way, a weakness in the current proportionate selection method in XCS is identified. Several problem bounds are derived that need to be obeyed to enable proper evolutionary pressure. Moreover, a fitness dilemma is identified that causes accuracy-based fitness to be misleading. Improvements are introduced to XCS to make fitness pressure more robust and overcome the fitness dilemma. Specifically, (1) tournament selection results in a much better fitness-bias exploitation, and (2) bilateral accuracy prevents the fitness dilemma. While the improvements stand for themselves, we believe they also contribute to the ultimate goal of an evolutionary learning system that is able to solve decomposable machine-learning problems quickly, accurately, and reliably. The paper also contributes to the further understanding of XCS in general and the fitness approach in XCS in particular.