Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Michael Emmerich
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2019) 27 (4): 699–725.
Published: 01 December 2019
FIGURES
| View All (9)
Abstract
View article
PDF
Generating more evenly distributed samples in high dimensional search spaces is the major purpose of the recently proposed mirrored sampling technique for evolution strategies. The diversity of the mutation samples is enlarged and the convergence rate is therefore improved by the mirrored sampling. Motivated by the mirrored sampling technique, this article introduces a new derandomized sampling technique called mirrored orthogonal sampling . The performance of this new technique is both theoretically analyzed and empirically studied on the sphere function. In particular, the mirrored orthogonal sampling technique is applied to the well-known Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The resulting algorithm is experimentally tested on the well-known Black-Box Optimization Benchmark (BBOB). By comparing the results from the benchmark, mirrored orthogonal sampling is found to outperform both the standard CMA-ES and its variant using mirrored sampling.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2010) 18 (1): 97–126.
Published: 01 March 2010
Abstract
View article
PDF
While the motivation and usefulness of niching methods is beyond doubt, the relaxation of assumptions and limitations concerning the hypothetical search landscape is much needed if niching is to be valid in a broader range of applications. Upon the introduction of radii-based niching methods with derandomized evolution strategies (ES), the purpose of this study is to address the so-called niche radius problem. A new concept of an adaptive individual niche radius is applied to niching with the covariance matrix adaptation evolution strategy (CMA-ES). Two approaches are considered. The first approach couples the radius to the step size mechanism, while the second approach employs the Mahalanobis distance metric with the covariance matrix mechanism for the distance calculation, for obtaining niches with more complex geometrical shapes. The proposed approaches are described in detail, and then tested on high-dimensional artificial landscapes at several levels of difficulty. They are shown to be robust and to achieve satisfying results.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2001) 9 (3): 329–354.
Published: 01 September 2001
Abstract
View article
PDF
This paper describes the adaptation of evolutionary algorithms (EAs) to the structural optimization of chemical engineering plants, using rigorous process simulation combined with realistic costing procedures to calculate target function values. To represent chemical engineering plants, a network representation with typed vertices and variable structure will be introduced. For this representation, we introduce a technique on how to create problem specific search operators and apply them in stochastic optimization procedures. The applicability of the approach is demonstrated by a reference example. The design of the algorithms will be oriented at the systematic framework of metricbased evolutionary algorithms (MBEAs). MBEAs are a special class of evolutionary algorithms, fulfilling certain guidelines for the design of search operators, whose benefits have been proven in theory and practice. MBEAs rely upon a suitable definition of a metric on the search space. The definition of a metric for the graph representation will be one of the main issues discussed in this paper. Although this article deals with the problem domain of chemical plant optimization, the algorithmic design can be easily transferred to similar network optimization problems. A useful distance measure for variable dimensionality search spaces is suggested.