Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Miqing Li
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2020) 28 (2): 227–253.
Published: 01 June 2020
FIGURES
| View All (19)
Abstract
View article
PDF
The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation—weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2014) 22 (2): 189–230.
Published: 01 June 2014
FIGURES
| View All (15)
Abstract
View article
PDF
The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in space where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based evolutionary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically, in ETEA, four strategies are introduced: (1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; (2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; (3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; (4) Three diversity indicators—the minimum edge, degree, and ETCD—with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.