Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Mojgan Pourhassan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2019) 27 (4): 559–575.
Published: 01 December 2019
Abstract
View article
PDF
Evolutionary multiobjective optimization for the classical vertex cover problem has been analysed in Kratsch and Neumann ( 2013 ) in the context of parameterized complexity analysis. This article extends the analysis to the weighted vertex cover problem in which integer weights are assigned to the vertices and the goal is to find a vertex cover of minimum weight. Using an alternative mutation operator introduced in Kratsch and Neumann ( 2013 ), we provide a fixed parameter evolutionary algorithm with respect to OPT , the cost of an optimal solution for the problem. Moreover, we present a multiobjective evolutionary algorithm with standard mutation operator that keeps the population size in a polynomial order by means of a proper diversity mechanism, and therefore, manages to find a 2-approximation in expected polynomial time. We also introduce a population-based evolutionary algorithm which finds a ( 1 + ɛ ) -approximation in expected time O ( n · 2 min { n , 2 ( 1 - ɛ ) O P T } + n 3 ) .
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2019) 27 (3): 525–558.
Published: 01 September 2019
FIGURES
| View All (11)
Abstract
View article
PDF
The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which metaheuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a cluster-based approach and a node-based approach, have been proposed by Hu and Raidl ( 2008 ) for solving this problem. In this article, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the node-based approach solves the hard instance of the cluster-based approach presented in Corus et al. ( 2016 ) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the node-based approach for a class of Euclidean instances.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2016) 24 (1): 183–203.
Published: 01 March 2016
FIGURES
| View All (4)
Abstract
View article
PDF
Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. In this paper, we analyse the runtime of some evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem and the generalised travelling salesperson problem in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl ( 2012 ) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) evolutionary algorithm working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the problem can be solved in fixed-parameter time with the global structure representation. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other’s hard instances very efficiently. For the generalised travelling salesperson problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) evolutionary algorithm working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem.