Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Natalio Krasnogor
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (3): 307–342.
Published: 01 September 2009
Abstract
View article
PDF
In this paper we empirically evaluate several local search (LS) mechanisms that heuristically edit classification rules and rule sets to improve their performance. Two kinds of operators are studied, (1) rule-wise operators, which edit individual rules, and (2) a rule set-wise operator, which takes the rules from N parents ( N ≥ 2) to generate a new offspring, selecting the minimum subset of candidate rules that obtains maximum training accuracy. Moreover, various ways of integrating these operators within the evolutionary cycle of learning classifier systems are studied. The combinations of LS operators and policies are integrated in a Pittsburgh approach framework that we call MPLCS for memetic Pittsburgh learning classifier system. MPLCS is systematically evaluated using various metrics. Several datasets were employed with the objective of identifying which combination of operators and policies scale well, are robust to noise, generate compact solutions, and use the least amount of computational resources to solve the problems.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (2): 231–256.
Published: 01 June 2009
Abstract
View article
PDF
A cellular genetic algorithm (CGA) is a decentralized form of GA where individuals in a population are usually arranged in a 2D grid and interactions among individuals are restricted to a set neighborhood. In this paper, we extend the notion of cellularity to memetic algorithms (MA), a configuration termed cellular memetic algorithm (CMA). In addition, we propose adaptive mechanisms that tailor the amount of exploration versus exploitation of local solutions carried out by the CMA. We systematically benchmark this adaptive mechanism and provide evidence that the resulting adaptive CMA outperforms other methods both in the quality of solutions obtained and the number of function evaluations for a range of continuous optimization problems.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2004) 12 (3): 273–302.
Published: 01 September 2004
Abstract
View article
PDF
This paper presents a real-coded memetic algorithm that applies a crossover hill-climbing to solutions produced by the genetic operators. On the one hand, the memetic algorithm provides global search (reliability) by means of the promotion of high levels of population diversity. On the other, the crossover hill-climbing exploits the self-adaptive capacity of real-parameter crossover operators with the aim of producing an effective local tuning on the solutions (accuracy). An important aspect of the memetic algorithm proposed is that it adaptively assigns different local search probabilities to individuals. It was observed that the algorithm adjusts the global/local search balance according to the particularities of each problem instance. Experimental results show that, for a wide range of problems, the method we propose here consistently outperforms other real-coded memetic algorithms which appeared in the literature.