Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Paweł Liskowski
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2017) 25 (3): 375–406.
Published: 01 September 2017
FIGURES
| View All (8)
Abstract
View article
PDF
In test-based problems, commonly approached with competitive coevolutionary algorithms, the fitness of a candidate solution is determined by the outcomes of its interactions with multiple tests. Usually, fitness is a scalar aggregate of interaction outcomes, and as such imposes a complete order on the candidate solutions. However, passing different tests may require unrelated “skills,” and candidate solutions may vary with respect to such capabilities. In this study, we provide theoretical evidence that scalar fitness, inherently incapable of capturing such differences, is likely to lead to premature convergence. To mitigate this problem, we propose disco , a method that automatically identifies the groups of tests for which the candidate solutions behave similarly and define the above skills. Each such group gives rise to a derived objective , and these objectives together guide the search algorithm in multi-objective fashion. When applied to several well-known test-based problems, the proposed approach significantly outperforms the conventional two-population coevolution. This opens the door to efficient and generic countermeasures to premature convergence for both coevolutionary and evolutionary algorithms applied to problems featuring aggregating fitness functions.