Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Pekka J. Korhonen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (3): 411–436.
Published: 01 September 2009
Abstract
View article
PDF
In this paper, we discuss the idea of incorporating preference information into evolutionary multi-objective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of his or her reference point consisting of desirable aspiration levels for objective functions. The information is used in an evolutionary algorithm to generate a new population by combining the fitness function and an achievement scalarizing function. In multi-objective optimization, achievement scalarizing functions are widely used to project a given reference point into the Pareto optimal set. In our approach, the next population is thus more concentrated in the area where more preferred alternatives are assumed to lie and the whole Pareto optimal set does not have to be generated with equal accuracy. The approach is demonstrated by numerical examples.