Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Peter Dittrich
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2017) 25 (4): 643–671.
Published: 01 December 2017
FIGURES
| View All (17)
Abstract
View article
PDF
Unconventional computing devices operating on nonlinear chemical media offer an interesting alternative to standard, semiconductor-based computers. In this work we study in-silico a chemical medium composed of communicating droplets that functions as a database classifier. The droplet network can be “programmed” by an externally provided illumination pattern. The complex relationship between the illumination pattern and the droplet behavior makes manual programming hard. We introduce an evolutionary algorithm that automatically finds the optimal illumination pattern for a given classification problem. Notably, our approach does not require us to prespecify the signals that represent the output classes of the classification problem, which is achieved by using a fitness function that measures the mutual information between chemical oscillation patterns and desired output classes. We illustrate the feasibility of our approach in computer simulations by evolving droplet classifiers for three machine learning datasets. We demonstrate that the same medium composed of 25 droplets located on a square lattice can be successfully used for different classification tasks by applying different illumination patterns as its externally supplied program.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2004) 12 (2): 223–242.
Published: 01 June 2004
Abstract
View article
PDF
A large training set of fitness cases can critically slow down genetic programming, if no appropriate subset selection method is applied. Such a method allows an individual to be evaluated on a smaller subset of fitness cases. In this paper we suggest a new subset selection method that takes the problem structure into account, while being problem independent at the same time. In order to achieve this, information about the problem structure is acquired during evolutionary search by creating a topology (relationship) on the set of fitness cases. The topology is induced by individuals of the evolving population. This is done by increasing the strength of the relation between two fitness cases, if an individual of the population is able to solve both of them. Our new topology—based subset selection method chooses a subset, such that fitness cases in this subset are as distantly related as is possible with respect to the induced topology. We compare topology—based selection of fitness cases with dynamic subset selection and stochastic subset sampling on four different problems. On average, runs with topology—based selection show faster progress than the others.