Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Peter Merz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2004) 12 (3): 303–325.
Published: 01 September 2004
Abstract
View article
PDF
Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2000) 8 (1): 61–91.
Published: 01 March 2000
Abstract
View article
PDF
The fitness landscape of the graph bipartitioning problem is investigated by performing a search space analysis for several types of graphs. The analysis shows that the structure of the search space is significantly different for the types of instances studied. Moreover, with increasing epistasis, the amount of gene interactions in the representation of a solution in an evolutionary algorithm, the number of local minima for one type of instance decreases and, thus, the search becomes easier. We suggest that other characteristics besides high epistasis might have greater influence on the hardness of a problem. To understand these characteristics, the notion of a dependency graph describing gene interactions is introduced. In particular, the local structure and the regularity of the dependency graph seems to be important for the performance of an algorithm, and in fact, algorithms that exploit these properties perform significantly better than others which do not. It will be shown that a simple hybrid multi-start local search exploiting locality in the structure of the graphs is able to find optimum or near optimum solutions very quickly. However, if the problem size increases or the graphs become unstructured, a memetic algorithm (a genetic algorithm incorporating local search) is shown to be much more effective.