Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Petr Pošík
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (4): 483–508.
Published: 01 December 2012
FIGURES
| View All (5)
Abstract
View article
PDF
Six population-based methods for real-valued black box optimization are thoroughly compared in this article. One of them, Nelder-Mead simplex search, is rather old, but still a popular technique of direct search. The remaining five (POEMS, G3PCX, Cauchy EDA, BIPOP-CMA-ES, and CMA-ES) are more recent and came from the evolutionary computation community. The recently proposed comparing continuous optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that BIPOP-CMA-ES reaches the highest success rates and is often also quite fast. The results of the remaining algorithms are mixed, but Cauchy EDA and POEMS are usually slow.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (4): 509–541.
Published: 01 December 2012
FIGURES
Abstract
View article
PDF
Four methods for global numerical black box optimization with origins in the mathematical programming community are described and experimentally compared with the state of the art evolutionary method, BIPOP-CMA-ES. The methods chosen for the comparison exhibit various features that are potentially interesting for the evolutionary computation community: systematic sampling of the search space (DIRECT, MCS) possibly combined with a local search method (MCS), or a multi-start approach (NEWUOA, GLOBAL) possibly equipped with a careful selection of points to run a local optimizer from (GLOBAL). The recently proposed “comparing continuous optimizers” (COCO) methodology was adopted as the basis for the comparison. Based on the results, we draw suggestions about which algorithm should be used depending on the available budget of function evaluations, and we propose several possibilities for hybridizing evolutionary algorithms (EAs) with features of the other compared algorithms.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (4): 575–607.
Published: 01 December 2012
FIGURES
| View All (8)
Abstract
View article
PDF
Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method.