Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
R. Paul Wiegand
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2024) 32 (3): 249–273.
Published: 03 September 2024
Abstract
View article
PDF
Novelty search is a powerful tool for finding diverse sets of objects in complicated spaces. Recent experiments on simplified versions of novelty search introduce the idea that novelty search happens at the level of the archive space, rather than individual points. The sparseness measure and archive update criterion create a process that is driven by a two measures: (1) spread out to cover the space while trying to remain as efficiently packed as possible, and (2) metrics inspired by k nearest neighbor theory. In this paper, we generalize previous simplifications of novelty search to include traditional population ( μ , λ ) dynamics for generating new search points, where the population and the archive are updated separately. We provide some theoretical guidance regarding balancing mutation and sparseness criteria and introduce the concept of saturation as a way of talking about fully covered spaces. We show empirically that claims that novelty search is inherently objectiveless are incorrect. We leverage the understanding of novelty search as an optimizer of archive coverage, suggest several ways to improve the search, and demonstrate one simple improvement—generating some new points directly from the archive rather than the parent population.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2004) 12 (4): 405–434.
Published: 01 December 2004
Abstract
View article
PDF
Coevolutionary algorithms are variants of traditional evolutionary algorithms and are often considered more suitable for certain kinds of complex tasks than noncoevolutionary methods. One example is a general cooperative coevolutionary framework for function optimization. This paper presents a thorough and rigorous introductory analysis of the optimization potential of cooperative coevolution. Using the cooperative coevolutionary framework as a starting point, the CC (1+1) EA is defined and investigated from the perspective of the expected optimization time. The research concentrates on separability, a key property of objective functions. We show that separability alone is not sufficient to yield any advantage of the CC (1+1) EA over its traditional, non-coevolutionary counterpart. Such an advantage is demonstrated to have its basis in the increased explorative possibilities of the cooperative coevolutionary algorithm. For inseparable functions, the cooperative coevolutionary set-up can be harmful. We prove that for some objective functions the CC (1+1) EA fails to locate a global optimum with overwhelming probability, even in infinite time; however, inseparability alone is not sufficient for an objective function to cause difficulties. It is demonstrated that the CC (1+1) EA may perform equal to its traditional counterpart, and may even outperform it on certain inseparable functions.