Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Richard J. Preen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2016) 24 (1): 89–111.
Published: 01 March 2016
FIGURES
| View All (13)
Abstract
View article
PDF
An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions were made. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogate-assisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2013) 21 (3): 361–387.
Published: 01 September 2013
FIGURES
| View All (20)
Abstract
View article
PDF
A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.