Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Ruochen Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2021) 29 (4): 491–519.
Published: 01 December 2021
Abstract
View article
PDF
Dynamic multiobjective optimization deals with simultaneous optimization of multiple conflicting objectives that change over time. Several response strategies for dynamic optimization have been proposed, which do not work well for all types of environmental changes. In this article, we propose a new dynamic multiobjective evolutionary algorithm based on objective space decomposition, in which the maxi-min fitness function is adopted for selection and a self-adaptive response strategy integrating a number of different response strategies is designed to handle unknown environmental changes. The self-adaptive response strategy can adaptively select one of the strategies according to their contributions to the tracking performance in the previous environments. Experimental results indicate that the proposed algorithm is competitive and promising for solving different DMOPs in the presence of unknown environmental changes. Meanwhile, the proposed algorithm is applied to solve the parameter tuning problem of a proportional integral derivative (PID) controller of a dynamic system, obtaining better control effect.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2021) 29 (2): 269–304.
Published: 01 June 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Decomposition-based evolutionary algorithms have been quite successful in dealing with multiobjective optimization problems. Recently, more and more researchers attempt to apply the decomposition approach to solve many-objective optimization problems. A many-objective evolutionary algorithm based on decomposition with correlative selection mechanism (MOEA/D-CSM) is also proposed to solve many-objective optimization problems in this article. Since MOEA/D-SCM is based on a decomposition approach which adopts penalty boundary intersection (PBI), a set of reference points must be generated in advance. Thus, a new concept related to the set of reference points is introduced first, namely, the correlation between an individual and a reference point. Thereafter, a new selection mechanism based on the correlation is designed and called correlative selection mechanism. The correlative selection mechanism finds its correlative individuals for each reference point as soon as possible so that the diversity among population members is maintained. However, when a reference point has two or more correlative individuals, the worse correlative individuals may be removed from a population so that the solutions can be ensured to move toward the Pareto-optimal front. In a comprehensive experimental study, we apply MOEA/D-CSM to a number of many-objective test problems with 3 to 15 objectives and make a comparison with three state-of-the-art many-objective evolutionary algorithms, namely, NSGA-III, MOEA/D, and RVEA. Experimental results show that the proposed MOEA/D-CSM can produce competitive results on most of the problems considered in this study.