Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Severino F. Galán
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2013) 21 (2): 197–229.
Published: 01 May 2013
FIGURES
| View All (16)
Abstract
View article
PDF
Genetic algorithms typically use crossover, which relies on mating a set of selected parents. As part of crossover, random mating is often carried out. A novel approach to parent mating is presented in this work. Our novel approach can be applied in combination with a traditional similarity-based criterion to measure distance between individuals or with a fitness-based criterion. We introduce a parameter called the mating index that allows different mating strategies to be developed within a uniform framework: an exploitative strategy called best-first, an explorative strategy called best-last, and an adaptive strategy called self-adaptive. Self-adaptive mating is defined in the context of the novel algorithm, and aims to achieve a balance between exploitation and exploration in a domain-independent manner. The present work formally defines the novel mating approach, analyzes its behavior, and conducts an extensive experimental study to quantitatively determine its benefits. In the domain of real function optimization, the experiments show that, as the degree of multimodality of the function at hand grows, increasing the mating index improves performance. In the case of the self-adaptive mating strategy, the experiments give strong results for several case studies.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2009) 17 (1): 55–88.
Published: 01 March 2009
Abstract
View article
PDF
Constraints occur in many application areas of interest to evolutionary computation. The area considered here is Bayesian networks (BNs), which is a probability-based method for representing and reasoning with uncertain knowledge. This work deals with constraints in BNs and investigates how tournament selection can be adapted to better process such constraints in the context of abductive inference. Abductive inference in BNs consists of finding the most probable explanation given some evidence. Since exact abductive inference is NP -hard, several approximate approaches to this inference task have been developed. One of them applies evolutionary techniques in order to find optimal or close-to-optimal explanations. A problem with the traditional evolutionary approach is this: As the number of constraints determined by the zeros in the conditional probability tables grows, performance deteriorates because the number of explanations whose probability is greater than zero decreases. To minimize this problem, this paper presents and analyzes a new evolutionary approach to abductive inference in BNs. By considering abductive inference as a constraint optimization problem, the novel approach improves performance dramatically when a BN's conditional probability tables contain a significant number of zeros. Experimental results are presented comparing the performances of the traditional evolutionary approach and the approach introduced in this work. The results show that the new approach significantly outperforms the traditional one.