Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Sin Man Cheang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2006) 14 (2): 129–156.
Published: 01 June 2006
Abstract
View article
PDF
This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential programif required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.