Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Thomas Helmuth
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation 1–31.
Published: 22 March 2024
Abstract
View article
PDF
Genetic Programming (GP) often uses large training sets and requires all individuals to be evaluated on all training cases during selection. Random down-sampled lexicase selection evaluates individuals on only a random subset of the training cases, allowing for more individuals to be explored with the same number of program executions. However, sampling randomly can exclude important cases from the down-sample for a number of generations, while cases that measure the same behavior (synonymous cases) may be overused. In this work, we introduce Informed Down-Sampled Lexicase Selection. This method leverages population statistics to build down-samples that contain more distinct and therefore informative training cases. Through an empirical investigation across two different GP systems (PushGP and Grammar-Guided GP), we find that informed down-sampling significantly outperforms random down-sampling on a set of contemporary program synthesis benchmark problems. Through an analysis of the created down-samples, we find that important training cases are included in the down-sample consistently across independent evolutionary runs and systems. We hypothesize that this improvement can be attributed to the ability of Informed Down-Sampled Lexicase Selection to maintain more specialist individuals over the course of evolution, while still benefiting from reduced per-evaluation costs.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2019) 27 (3): 377–402.
Published: 01 September 2019
FIGURES
| View All (7)
Abstract
View article
PDF
Lexicase selection is a parent selection method that considers training cases individually, rather than in aggregate, when performing parent selection. Whereas previous work has demonstrated the ability of lexicase selection to solve difficult problems in program synthesis and symbolic regression, the central goal of this article is to develop the theoretical underpinnings that explain its performance. To this end, we derive an analytical formula that gives the expected probabilities of selection under lexicase selection, given a population and its behavior. In addition, we expand upon the relation of lexicase selection to many-objective optimization methods to describe the behavior of lexicase selection, which is to select individuals on the boundaries of Pareto fronts in high-dimensional space. We show analytically why lexicase selection performs more poorly for certain sizes of population and training cases, and show why it has been shown to perform more poorly in continuous error spaces. To address this last concern, we propose new variants of ε -lexicase selection, a method that modifies the pass condition in lexicase selection to allow near-elite individuals to pass cases, thereby improving selection performance with continuous errors. We show that ε -lexicase outperforms several diversity–maintenance strategies on a number of real-world and synthetic regression problems.
Includes: Supplementary data