Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Yang Yu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2018) 26 (2): 237–267.
Published: 01 June 2018
FIGURES
| View All (4)
Abstract
View article
PDF
In real-world optimization tasks, the objective (i.e., fitness) function evaluation is often disturbed by noise due to a wide range of uncertainties. Evolutionary algorithms are often employed in noisy optimization, where reducing the negative effect of noise is a crucial issue. Sampling is a popular strategy for dealing with noise: to estimate the fitness of a solution, it evaluates the fitness multiple ( ) times independently and then uses the sample average to approximate the true fitness. Obviously, sampling can make the fitness estimation closer to the true value, but also increases the estimation cost. Previous studies mainly focused on empirical analysis and design of efficient sampling strategies, while the impact of sampling is unclear from a theoretical viewpoint. In this article, we show that sampling can speed up noisy evolutionary optimization exponentially via rigorous running time analysis. For the (1 1)-EA solving the OneMax and the LeadingOnes problems under prior (e.g., one-bit) or posterior (e.g., additive Gaussian) noise, we prove that, under a high noise level, the running time can be reduced from exponential to polynomial by sampling. The analysis also shows that a gap of one on the value of for sampling can lead to an exponential difference on the expected running time, cautioning for a careful selection of . We further prove by using two illustrative examples that sampling can be more effective for noise handling than parent populations and threshold selection, two strategies that have shown to be robust to noise. Finally, we also show that sampling can be ineffective when noise does not bring a negative impact.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2018) 26 (1): 1–41.
Published: 01 March 2018
FIGURES
| View All (9)
Abstract
View article
PDF
Many optimization tasks must be handled in noisy environments, where the exact evaluation of a solution cannot be obtained, only a noisy one. For optimization of noisy tasks, evolutionary algorithms (EAs), a type of stochastic metaheuristic search algorithm, have been widely and successfully applied. Previous work mainly focuses on the empirical study and design of EAs for optimization under noisy conditions, while the theoretical understandings are largely insufficient. In this study, we first investigate how noisy fitness can affect the running time of EAs. Two kinds of noise-helpful problems are identified, on which the EAs will run faster with the presence of noise, and thus the noise should not be handled. Second, on a representative noise-harmful problem in which the noise has a strong negative effect, we examine two commonly employed mechanisms dealing with noise in EAs: reevaluation and threshold selection . The analysis discloses that using these two strategies simultaneously is effective for the one-bit noise but ineffective for the asymmetric one-bit noise. Smooth threshold selection is then proposed, which can be proved to be an effective strategy to further improve the noise tolerance ability in the problem. We then complement the theoretical analysis by experiments on both synthetic problems as well as two combinatorial problems, the minimum spanning tree and the maximum matching. The experimental results agree with the theoretical findings and also show that the proposed smooth threshold selection can deal with the noise better.