Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Yiping Liu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2020) 28 (1): 1–25.
Published: 01 March 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Pareto-based multi-objective evolutionary algorithms experience grand challenges in solving many-objective optimization problems due to their inability to maintain both convergence and diversity in a high-dimensional objective space. Exiting approaches usually modify the selection criteria to overcome this issue. Different from them, we propose a novel meta-objective (MeO) approach that transforms the many-objective optimization problems in which the new optimization problems become easier to solve by the Pareto-based algorithms. MeO converts a given many-objective optimization problem into a new one, which has the same Pareto optimal solutions and the number of objectives with the original one. Each meta-objective in the new problem consists of two components which measure the convergence and diversity performances of a solution, respectively. Since MeO only converts the problem formulation, it can be readily incorporated within any multi-objective evolutionary algorithms, including those non-Pareto-based ones. Particularly, it can boost the Pareto-based algorithms' ability to solve many-objective optimization problems. Due to separately evaluating the convergence and diversity performances of a solution, the traditional density-based selection criteria, for example, crowding distance, will no longer mistake a solution with poor convergence performance for a solution with low density value. By penalizing a solution in term of its convergence performance in the meta-objective space, the Pareto dominance becomes much more effective for a many-objective optimization problem. Comparative study validates the competitive performance of the proposed meta-objective approach in solving many-objective optimization problems.
Includes: Supplementary data