Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Zhou Ji
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2007) 15 (2): 223–251.
Published: 01 June 2007
Abstract
View article
PDF
This paper reviews the progress of negative selection algorithms, an anomaly/change detection approach in Artificial Immune Systems (AIS). Following its initial model, we try to identify the fundamental characteristics of this family of algorithms and summarize their diversities. There exist various elements in this method, including data representation, coverage estimate, affinity measure, and matching rules, which are discussed for different variations. The various negative selection algorithms are categorized by different criteria as well. The relationship and possible combinations with other AIS or other machine learning methods are discussed. Prospective development and applicability of negative selection algorithms and their influence on related areas are then speculated based on the discussion.