Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-8 of 8
Regular Papers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2018) 26 (3): 471–505.
Published: 01 September 2018
FIGURES
| View All (18)
Abstract
View article
PDF
This article tackles the Distribution Network Expansion Planning (DNEP) problem that has to be solved by distribution network operators to decide which, where, and/or when enhancements to electricity networks should be introduced to satisfy the future power demands. Because of many real-world details involved, the structure of the problem is not exploited easily using mathematical programming techniques, for which reason we consider solving this problem with evolutionary algorithms (EAs). We compare three types of EAs for optimizing expansion plans: the classic genetic algorithm (GA), the estimation-of-distribution algorithm (EDA), and the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA). Not fully knowing the structure of the problem, we study the effect of linkage learning through the use of three linkage models: univariate, marginal product, and linkage tree. We furthermore experiment with the impact of incorporating different levels of problem-specific knowledge in the variation operators. Experiments show that the use of problem-specific variation operators is far more important for the classic GA to find high-quality solutions. In all EAs, the marginal product model and its linkage learning procedure have difficulty in capturing and exploiting the DNEP problem structure. GOMEA, especially when combined with the linkage tree structure, is found to have the most robust performance by far, even when an out-of-the-box variant is used that does not exploit problem-specific knowledge. Based on experiments, we suggest that when selecting optimization algorithms for power system expansion planning problems, EAs that have the ability to effectively model and efficiently exploit problem structures, such as GOMEA, should be given priority, especially in the case of black-box or grey-box optimization.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2018) 26 (3): 507–533.
Published: 01 September 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Real-world optimization problems have been studied in the past, but the work resulted in approaches tailored to individual problems that could not be easily generalized. The reason for this limitation was the lack of appropriate models for the systematic study of salient aspects of real-world problems. The aim of this article is to study one of such aspects: multi-hardness. We propose a variety of decomposition-based algorithms for an abstract multi-hard problem and compare them against the most promising heuristics.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (1): 135–160.
Published: 01 March 2012
FIGURES
| View All (9)
Abstract
View article
PDF
Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that explore the space of potential solutions by building and sampling explicit probabilistic models of promising candidate solutions. While the primary goal of applying EDAs is to discover the global optimum or at least its accurate approximation, besides this, any EDA provides us with a sequence of probabilistic models, which in most cases hold a great deal of information about the problem. Although using problem-specific knowledge has been shown to significantly improve performance of EDAs and other evolutionary algorithms, this readily available source of problem-specific information has been practically ignored by the EDA community. This paper takes the first step toward the use of probabilistic models obtained by EDAs to speed up the solution of similar problems in the future. More specifically, we propose two approaches to biasing model building in the hierarchical Bayesian optimization algorithm (hBOA) based on knowledge automatically learned from previous hBOA runs on similar problems. We show that the proposed methods lead to substantial speedups and argue that the methods should work well in other applications that require solving a large number of problems with similar structure.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (1): 63–89.
Published: 01 March 2012
FIGURES
| View All (14)
Abstract
View article
PDF
The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (1): 1–26.
Published: 01 March 2012
FIGURES
| View All (21)
Abstract
View article
PDF
In recent years an increasing number of real-world many-dimensional optimisation problems have been identified across the spectrum of research fields. Many popular evolutionary algorithms use non-dominance as a measure for selecting solutions for future generations. The process of sorting populations into non-dominated fronts is usually the controlling order of computational complexity and can be expensive for large populations or for a high number of objectives. This paper presents two novel methods for non-dominated sorting: deductive sort and climbing sort. The two new methods are compared to the fast non-dominated sort of NSGA-II and the non-dominated rank sort of the omni-optimizer. The results demonstrate the improved efficiencies of the deductive sort and the reductions in comparisons that can be made when applying inferred dominance relationships defined in this paper.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (1): 91–133.
Published: 01 March 2012
FIGURES
| View All (13)
Abstract
View article
PDF
Evolutionary robotics (ER) aims at automatically designing robots or controllers of robots without having to describe their inner workings. To reach this goal, ER researchers primarily employ phenotypes that can lead to an infinite number of robot behaviors and fitness functions that only reward the achievement of the task—and not how to achieve it. These choices make ER particularly prone to premature convergence. To tackle this problem, several papers recently proposed to explicitly encourage the diversity of the robot behaviors, rather than the diversity of the genotypes as in classic evolutionary optimization. Such an approach avoids the need to compute distances between structures and the pitfalls of the noninjectivity of the phenotype/behavior relation; however, it also introduces new questions: how to compare behavior? should this comparison be task specific? and what is the best way to encourage diversity in this context? In this paper, we review the main published approaches to behavioral diversity and benchmark them in a common framework. We compare each approach on three different tasks and two different genotypes. The results show that fostering behavioral diversity substantially improves the evolutionary process in the investigated experiments, regardless of genotype or task. Among the benchmarked approaches, multi-objective methods were the most efficient and the generic, Hamming-based, behavioral distance was at least as efficient as task specific behavioral metrics.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2012) 20 (1): 27–62.
Published: 01 March 2012
FIGURES
| View All (28)
Abstract
View article
PDF
In a multimodal optimization task, the main purpose is to find multiple optimal solutions (global and local), so that the user can have better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be switched to another suitable optimum solution. To this end, evolutionary optimization algorithms (EA) stand as viable methodologies mainly due to their ability to find and capture multiple solutions within a population in a single simulation run. With the preselection method suggested in 1970, there has been a steady suggestion of new algorithms. Most of these methodologies employed a niching scheme in an existing single-objective evolutionary algorithm framework so that similar solutions in a population are deemphasized in order to focus and maintain multiple distant yet near-optimal solutions. In this paper, we use a completely different strategy in which the single-objective multimodal optimization problem is converted into a suitable bi-objective optimization problem so that all optimal solutions become members of the resulting weak Pareto-optimal set. With the modified definitions of domination and different formulations of an artificially created additional objective function, we present successful results on problems with as large as 500 optima. Most past multimodal EA studies considered problems having only a few variables. In this paper, we have solved up to 16-variable test problems having as many as 48 optimal solutions and for the first time suggested multimodal constrained test problems which are scalable in terms of number of optima, constraints, and variables. The concept of using bi-objective optimization for solving single-objective multimodal optimization problems seems novel and interesting, and more importantly opens up further avenues for research and application.
Journal Articles
Publisher: Journals Gateway
Evolutionary Computation (2010) 18 (3): 451–489.
Published: 01 September 2010
Abstract
View article
PDF
As practitioners we are interested in the likelihood of the population containing a copy of the optimum. The dynamic systems approach, however, does not help us to calculate that quantity. Markov chain analysis can be used in principle to calculate the quantity. However, since the associated transition matrices are enormous even for modest problems, it follows that in practice these calculations are usually computationally infeasible. Therefore, some improvements on this situation are desirable. In this paper, we present a method for modeling the behavior of finite population evolutionary algorithms (EAs), and show that if the population size is greater than 1 and much less than the cardinality of the search space, the resulting exact model requires considerably less memory space for theoretically running the stochastic search process of the original EA than the Nix and Vose-style Markov chain model. We also present some approximate models that use still less memory space than the exact model. Furthermore, based on our models, we examine the selection pressure by fitness-proportionate selection, and observe that on average over all population trajectories, there is no such strong bias toward selecting the higher fitness individuals as the fitness landscape suggests.