18F-PI-2620 is a newer tau-PET tracer with minimal off-target binding in the choroid plexus. Defining tau cut-points to differentiate between cognitively unimpaired and impaired individuals is crucial for both biomarker validation and clinical use, but research using 18F-PI-2620 is limited. In 675 participants (mean age: 64, 64% Female, 186 Hispanic, 209 non-Hispanic Black, and 280 non-Hispanic White) from the Health and Aging Brain Study-Health Disparities, we used the area under the receiver operating characteristic curve to identify a region of interest and corresponding cut-point at which 18F-PI-2620 standardized uptake value ratio best distinguished between amyloid negative cognitively unimpaired and amyloid-positive cognitively-impaired individuals. The regional or composite standardized uptake value ratio that maximized sensitivity and specificity (measured by the Youden index) was selected as the best-performing region of interest and was further evaluated using Gaussian mixture modeling. We evaluated the performance of the chosen region of interest and cut-point in the three ethnoracial groups. The best-performing region of interest was the medial temporal composite, with a cut-point of 1.26. This region performed well in Hispanic and non-Hispanic White subgroups, but not in the non-Hispanic Black subgroup. The data show the utility of this region to identify clinically relevant levels of tau. Future work should explore the relationship of tau to comorbid conditions across ethnic and racial groups.

The primary current biomarker model of Alzheimer’s disease (AD) proposes a sequential, non-linear series of pathological changes in which amyloid beta (Aβ) becomes abnormal first but does not produce clinical deficits, followed by the spread of tau out of the medial temporal lobe to wider neocortical regions (Jack, Wiste, et al., 2018; Jack Jr. et al., 2024; Jagust, 2018; La Joie et al., 2020; Schöll et al., 2016), although the pattern and progression of pathological changes may vary across different tau subtypes (Charil et al., 2019; Ferreira et al., 2020; Murray et al., 2011). The Aβ, tau, and neurodegeneration (AT(N)) framework (Jack, Bennett, et al., 2018; Jack et al., 2024) systematizes these biological changes for research feasibility. Staging within this framework relies on determining cut-points for biomarker abnormality, but because these thresholds are influenced by the study sample, their applicability to more diverse populations may be limited (Gleason et al., 2022).

Tau accumulation is more closely linked to cognitive changes than Aβ, with higher baseline tau PET associated with steeper rates of cognitive decline over time (Hanseeuw et al., 2019; Jack et al., 2019; La Joie et al., 2020). Accordingly, establishing cut-points for tau positivity is critical for tracking disease progression, staging, and evaluating intervention success (Jack, Bennett, et al., 2018; Jack et al., 2017). Several ongoing studies are focused on characterizing later-developed tau-PET tracers, including 18F-PI-2620, 18F-MK-6240, and 18F-RO-948 (Betthauser et al., 2019; Kroth et al., 2019; Mormino et al., 2021; Pascoal et al., 2018; Wong et al., 2018). Here, we use 18F-PI-2620, one of the newer tau-PET tracers. Although, like all tau tracers, 18F-PI-2620 does show evidence of off-target binding, most notably in the anterior cerebellum and in the meninges, it benefits from lower off-target binding in the choroid plexus than the widely-used tracer, 18F-flortaucipir (AV-1451, T807, Tauvid) (Kroth et al., 2019; Mormino et al., 2021), and improved early-stage detection of pathological tau (Aliaga et al., 2024; Bullich et al., 2022; Kroth et al., 2019; Mormino et al., 2021; Mueller et al., 2020).

Previous studies have quantified abnormal tau by calculating mean tracer uptake in a “meta region of interest (ROI),” capturing a broad range of pathological change (Jack et al., 2017; Maass et al., 2017; Wang et al., 2016), and a multi-stage approach quantifying tau in specific spatiotemporal patterns based on Braak and Braak neuropathological findings (Braak & Braak, 1991). Several studies demonstrate that temporal and temporoparietal ROIs outperform neuropathological staging approaches and are reliable across tau tracers (Jack, Wiste, et al., 2018; Leuzy et al., 2020; Villemagne et al., 2023). In key regions previously evaluated in flortaucipir PET studies (Jack, Wiste, et al., 2018; Leuzy et al., 2021), we use area under the receiver operating characteristic curve (AUROC), Gaussian mixture modeling (GMM), and two standard deviations above the mean signal in cognitively-unimpaired participants, to identify cut-points that best classify participants as cognitively-impaired using 18F-PI-2620 standardized uptake value ratios (SUVRs). We identified cut-points and evaluated their performance in a subgroup of Aβ-positive cognitively-impaired (CI) and Aβ-negative cognitively-unimpaired (CU) participants (n = 675). Because of ethnoracial differences in Aβ accumulation (Garrett et al., 2019; O’Bryant et al., 2021; Wilkins et al., 2022), we also evaluated cut-point performance across the full spectrum of participants (CI and CU), regardless of Aβ status (n = 879). We use a multi-ethnoracial cohort spanning a range of socioeconomic and comorbidity profiles that are more representative of the older population than many other cohorts (Lennon et al., 2022; Raman et al., 2022).

2.1 Participants

All participants in the Health and Aging Brain Study - Health Disparities (HABS-HD) provided informed consent in accordance with the Institutional Review Boards for human research (O’Bryant et al., 2021). Participants from Data Drop 6 of HABS-HD who completed a clinical interview, had useable 18F-florbetaben and 18F-PI-2620 PET scans within 1.5 years of their cognitive assessment, passed MRI and PET quality control, had available demographic information, and had all regions within the temporal composite ROI pass quality control were included in this study (eFig. 1): 879 participants; 729 CU, 120 with mild cognitive impairment (MCI), and 30 with dementia. Most analyses presented in the main text use a subset of these participants categorized by their Aβ PET status: 675 CU Aβ-negative and 76 CI Aβ-positive participants (48 with MCI and 28 with dementia, henceforth Alzheimer’s disease; AD). HABS-HD is a collaboration among 18 universities across the United States, led by Dr. Sid O’Bryant. All imaging is performed at the University of North Texas Health Science Center, Fort Worth, Texas. Experimental methods, enrollment, inclusion, and exclusion criteria for HABS-HD have been described previously (O’Bryant et al., 2021). Race and ethnicity were self-identified: 186 were Hispanic/Latino(a) (henceforth Hispanic), 209 were non-Hispanic African American/Black (henceforth NHB), and 280 were non-Hispanic White (henceforth NHW) (Table 1).

Table 1.

Participant demographics by cognitive diagnostic status.

Aβ- CU (N = 599)Aβ+ MCI (N = 48)Aβ+ AD (N = 28)Overall (N = 675)p-value
Age 64.62 ± 8.12 70.73 ± 9.33 72.25 ± 9.81 65.37 ± 8.54 <0.001 
Sex (%F) 391 (65%) 25 (52%) 13 (46%) 429 (64%) 0.03 
Ethnoracial group     0.96 
Hispanic 167 (28%) 12 (25%) 7 (25%) 186 (28%)  
Non-Hispanic Black 183 (31%) 17 (35%) 9 (32%) 209 (31%)  
Non-Hispanic White 249 (41%) 19 (40%) 12 (43%) 280 (41%)  
Education (y) 14.41 ± 3.51 13.65 ± 3.68 14.00 ± 4.30 14.34 ± 3.56 0.29 
Global Aβ 0.98 ± 0.04 1.34 ± 0.19 1.37 ± 0.22 1.02 ± 0.14 <0.001 
Centiloids 4.64 ± 7.04 60.97 ± 30.37 66.70 ± 35.61 11.22 ± 22.40 <0.001 
Hippocampal vol 3268.42 ± 368.71 3003.53 ± 369.56 2624.93 ± 652.50 3223.64 ± 408.03 <0.001 
APOE4+ 132 (22%) 25 (52%) 14 (50%) 171 (25%) <0.001 
Dx hypertension 401 (67%) 33 (69%) 21 (75%) 455 (67%) 0.66 
Dx diabetes 154 (26%) 17 (35%) 6 (21%) 177 (26%) 0.28 
Dx dyslipidemia 418 (70%) 34 (71%) 20 (71%) 472 (70%) 0.97 
BMI 31.38 ± 6.83 31.06 ± 9.40 29.94 ± 7.38 31.30 ± 7.06 0.11 
MMSE total 28.39 ± 1.77 26.81 ± 2.65 20.82 ± 4.82 27.96 ± 2.57 <0.001 
LM II (A+B total) 25.09 ± 7.19 14.77 ± 8.85 3.71 ± 4.85 23.47 ± 8.73 <0.001 
DS total 15.29 ± 3.85 13.33 ± 3.49 10.54 ± 4.10 14.95 ± 3.97 <0.001 
Aβ- CU (N = 599)Aβ+ MCI (N = 48)Aβ+ AD (N = 28)Overall (N = 675)p-value
Age 64.62 ± 8.12 70.73 ± 9.33 72.25 ± 9.81 65.37 ± 8.54 <0.001 
Sex (%F) 391 (65%) 25 (52%) 13 (46%) 429 (64%) 0.03 
Ethnoracial group     0.96 
Hispanic 167 (28%) 12 (25%) 7 (25%) 186 (28%)  
Non-Hispanic Black 183 (31%) 17 (35%) 9 (32%) 209 (31%)  
Non-Hispanic White 249 (41%) 19 (40%) 12 (43%) 280 (41%)  
Education (y) 14.41 ± 3.51 13.65 ± 3.68 14.00 ± 4.30 14.34 ± 3.56 0.29 
Global Aβ 0.98 ± 0.04 1.34 ± 0.19 1.37 ± 0.22 1.02 ± 0.14 <0.001 
Centiloids 4.64 ± 7.04 60.97 ± 30.37 66.70 ± 35.61 11.22 ± 22.40 <0.001 
Hippocampal vol 3268.42 ± 368.71 3003.53 ± 369.56 2624.93 ± 652.50 3223.64 ± 408.03 <0.001 
APOE4+ 132 (22%) 25 (52%) 14 (50%) 171 (25%) <0.001 
Dx hypertension 401 (67%) 33 (69%) 21 (75%) 455 (67%) 0.66 
Dx diabetes 154 (26%) 17 (35%) 6 (21%) 177 (26%) 0.28 
Dx dyslipidemia 418 (70%) 34 (71%) 20 (71%) 472 (70%) 0.97 
BMI 31.38 ± 6.83 31.06 ± 9.40 29.94 ± 7.38 31.30 ± 7.06 0.11 
MMSE total 28.39 ± 1.77 26.81 ± 2.65 20.82 ± 4.82 27.96 ± 2.57 <0.001 
LM II (A+B total) 25.09 ± 7.19 14.77 ± 8.85 3.71 ± 4.85 23.47 ± 8.73 <0.001 
DS total 15.29 ± 3.85 13.33 ± 3.49 10.54 ± 4.10 14.95 ± 3.97 <0.001 

Values represent mean (± SD) or percent. Group comparison (differences between diagnostic cognitive status) p-values were derived using Kruskal-Wallis tests for continuous variables and chi-square tests for categorical variables (α = 0.05). Type-II diabetes: Participants with a medical history of type-II diabetes or blood hemoglobin AIC ≥ 6.5 received a diagnosis of type-II diabetes. Hypertension: Participants with a current medical history of hypertension or elevated blood pressure (systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mmHg) across at least two blood pressure readings received a diagnosis of hypertension. Ten participants were missing BMI data, 3 missing MMSE data, 2 missing Digit Span data, and 2 missing hippocampal volume. Centiloids were calculated using this equation: CL = (159.08 × SUVRFBB) − 151.65 based on ADNI3 processing for FBB (Kolibash et al., 2020).

Abbreviations: Dx = diagnosis, Hippocampal Vol = hippocampal volume, BMI = body mass index, MMSE = Mini Mental State Examination, LM-II = Logical Memory-II, DS = Digit Span.

2.2 Cognitive diagnosis

Consensus cognitive diagnoses were established by trained clinicians (S1) and as described previously (O’Bryant et al., 2021).

2.3 Acquisition of PET and MRI data

T1-weighted whole-brain volumetric spoiled Magnetization-Prepared Rapid Gradient (MPRAGE) scans were acquired (3T Siemens Magnetom Skyra, voxel size 1.1 x 1.1 x 1.2 mm, n = 46; 3T Siemens Magnetom Vida system, voxel size was 1 mm x 1 mm x 1, n = 833). MRI images were bias corrected using the Advanced Normalization Tools (ANTS) with parameters of bspline-fitting = [200], shrink factor = 1, and convergence = [50 x 50 x 45 x 40, 0]. FreeSurfer version 5.3 was used for cortical parcellation and segmentation (https://surfer.nmr.mgh.harvard.edu/). We evaluated cortical thickness quality-control (QC) outcomes across all ROIs included in this study by assessing the frequency of QC failures within each ethnoracial group (S2). Aβ- and tau-PET scans were acquired on one of two identical Siemens Biograph Vision 450 scanners at the University of North Texas Health Science Center. Tau-PET imaging (5 mCi +/- 10% 18F-PI-2620 radiotracer injection; emission scan from 45-75 minutes post-injection; six 5-minute frames) and Aβ-PET imaging (8.1 mCi +/- 10% 18F-florbetaben (Neuraceq); 20-minute emission scan from 90 minutes post-injection; four 5-minute frames) shared an identical reconstruction protocol (8 iterations/5 subsets with time of flight on, a 440 x 440 matrix, and an all-pass filter).

2.4 Image analysis

T1 MRPAGE MRI, 18F-PI-2620, and 18F-florbetaben PET data used for the preparation of this manuscript are stored, managed, and processed by the University of Southern California Laboratory of Neuroimaging. We analyzed the scans using the ADNI3 protocol for 18F-florbetaben (S. Landau et al., 2011) and an in-house analysis protocol for 18F-PI-2620 PET. Detailed acquisition and processing methods are outlined in S3.

2.5 18F-florbetaben PET

FreeSurfer-defined regions (frontal, anterior/posterior cingulate, lateral parietal, lateral temporal cortex; whole cerebellum reference) were used to obtain global Aβ SUVRs, with a global SUVR ≥1.08 indicating Aβ positivity (S3).

2.6 18F-PI-2620 PET

Tau-PET summary mean SUVRs were derived from FreeSurfer-defined regions and normalized to the gray matter of the inferior cerebellum (S3, eFig. 2). To check for inflation of SUVRs due to off-target signal from the meninges and venous sinuses, we also extracted median SUVR measures for all ROIs (S4). All median and mean SUVRs were highly correlated (all r values ≥0.96), suggesting minimal influence of off-target signal on mean SUVRs. The maximum time between T1 and 18F-PI-2620 PET was 17 days.

2.7 18F-PI-2620 image processing for voxelwise analysis

Each participant’s T1-MRI was warped to MNI152 template space using a non-linear transformation (FSL FNIRT). 18F-PI-2620 SUVR images were created by applying these transformation parameters to the corresponding 18F-PI-2620 SUVR image in T1 space (S5).

3.1 Cognitive diagnostic group differences

Differences in demographics, comorbid conditions, global Aβ, and cognitive measurements across diagnostic groups were assessed using Kruskal-Wallis tests followed by Dunn’s post-hoc tests for continuous variables and chi-square tests for categorical variables (Table 1).

3.2 Region of interest selection

SUVRs in regions known to be affected by AD and frequently-examined in flortaucipir tau-PET studies were evaluated (Botha et al., 2018; Cho et al., 2018; Dodich et al., 2020; Guo et al., 2020; Jack et al., 2017, 2019; Leuzy et al., 2023; Lowe et al., 2018, 2018; Maass et al., 2017; Ossenkoppele et al., 2018; Schöll et al., 2016; Schwarz et al., 2018; Wang et al., 2016; Weigand et al., 2022): entorhinal cortex, fusiform gyrus, inferior and middle temporal gyri, parahippocampal cortex, amygdala, and hippocampus. We also evaluated tau signal in the posterior cingulate and lateral parietal regions. Two composite ROIs were created using a volume-weighted average of the mean uptake in 1) a temporal composite, which included all regions listed above except for posterior cingulate and lateral parietal cortex, and 2) regions with the highest positive correlation with diagnosis in this sample: entorhinal cortex, parahippocampal cortex, and amygdala (eFig. 3; henceforth the “medial temporal” ROI).

3.3 Voxelwise associations between diagnostic groups

To assess whole-brain 18F-PI-2620 patterns between diagnostic groups, voxelwise analyses were conducted using SPM-12 independent sample t-tests. Resulting T-maps were transformed to effect-size maps (Cohen’s d) for ease of interpretation (Fig. 1).

Fig. 1.

Voxelwise comparisons between diagnostic cognitive status. All results were thresholded at pFWE<0.05 at the cluster level and p < 0.001 at the voxel level before being rendered on the surface brain. T-maps were transformed to effect-size maps using Cohen’s d. (A) Voxelwise AUC values across diagnostic groups. Regions with the highest AUC when distinguishing CU from MCI were the parahippocampal cortex, entorhinal cortex, amygdala, and fusiform gyrus. These regions also had the highest AUC when distinguishing CU from AD, in addition to the inferior and middle temporal gyri, cingulate, and precuneus. These regions remained consistent but with lower AUC when distinguishing between CU and CI participants. MCI Aβ+ (n = 48), AD Aβ+ (n = 28), CI Aβ+ (n = 76), CU Aβ- (n = 599). (B) Voxelwise t-tests comparing tau in CU Aβ- and CI Aβ+. Both MCI and AD participants showed more uptake in the parahippocampal cortex, entorhinal cortex, and fusiform gyrus compared to CU participants. AD participants showed more binding in the middle temporal gyri, cingulate, and precuneus compared to CU and MCI groups. (C) Voxelwise t-tests comparing tau in the full spectrum of participants irrespective of Aβ status. Patterns reveal similar, albeit smaller differences in tau deposition. MCI (n = 120), dementia (n = 30), CI (n = 150), and CU (n = 729).

Fig. 1.

Voxelwise comparisons between diagnostic cognitive status. All results were thresholded at pFWE<0.05 at the cluster level and p < 0.001 at the voxel level before being rendered on the surface brain. T-maps were transformed to effect-size maps using Cohen’s d. (A) Voxelwise AUC values across diagnostic groups. Regions with the highest AUC when distinguishing CU from MCI were the parahippocampal cortex, entorhinal cortex, amygdala, and fusiform gyrus. These regions also had the highest AUC when distinguishing CU from AD, in addition to the inferior and middle temporal gyri, cingulate, and precuneus. These regions remained consistent but with lower AUC when distinguishing between CU and CI participants. MCI Aβ+ (n = 48), AD Aβ+ (n = 28), CI Aβ+ (n = 76), CU Aβ- (n = 599). (B) Voxelwise t-tests comparing tau in CU Aβ- and CI Aβ+. Both MCI and AD participants showed more uptake in the parahippocampal cortex, entorhinal cortex, and fusiform gyrus compared to CU participants. AD participants showed more binding in the middle temporal gyri, cingulate, and precuneus compared to CU and MCI groups. (C) Voxelwise t-tests comparing tau in the full spectrum of participants irrespective of Aβ status. Patterns reveal similar, albeit smaller differences in tau deposition. MCI (n = 120), dementia (n = 30), CI (n = 150), and CU (n = 729).

Close modal

3.4 Voxelwise ROC analysis

Voxelwise ROC analyses were performed by diagnostic group using the VoxelStats toolbox (Mathotaarachchi et al., 2016) to derive voxelwise AUC values (Fig. 1).

3.5 Best-performing ROI and cut-point calculations

Tau cut-points were assessed using two classification methods: (A) AUROC analyses and (B) calculation of two standard deviations above the mean (2SD+) SUVR value in CU Aβ-negative participants for the best-performing ROI identified in method A. We performed AUROC analyses in two ways: 1) using the mean SUVR in each ROI and 2) using the probabilities derived by applying a two-component (bimodal) Gaussian mixture model (GMM) to each ROI to estimate the probability of each SUVR belonging to the second Gaussian (‘abnormal’ or tau-positive) distribution. We identified the best-performing ROI and cut-point as that having the highest Youden index (sensitivity + specificity-1). A Youden index of at least 0.6 with a sensitivity or specificity of at least 0.5 was considered acceptable (Chen et al., 2015). We ran 1000 stratified bootstrap replicates to obtain a 95% confidence interval on the cut-points. Accuracy, sensitivity, specificity, Youden Index, and cut-points were calculated for each ROI.

3.6 Defining cut-points across the Aß spectrum

The same AUROC analyses were performed in the full spectrum of participants regardless of their Aβ status. Continuous global Aβ was included in these AUROC analyses (eTable 2).

3.7 Evaluating the performance of the cut-point across ethnoracial groups

Participants within each ethnoracial group were classified as tau positive or negative if their SUVR value in the best-performing ROI was above or below the identified cut-point for that region. We used the cut-point with the highest Youden index to classify participants as tau positive or negative. True positives were classified as any participant with a diagnosis of MCI or AD whose SUVR value in the best-performing ROI was greater than the identified cut-point. Additionally, AUROC analyses were conducted in each ethnoracial group separately (eTable 6).

4.1 Cognitive diagnostic group differences

Group differences are shown in Table 1.

4.2 Voxelwise differences between diagnostic groups

Both MCI and AD participants showed more tau uptake in the entorhinal cortex, fusiform gyrus, and parahippocampal cortex compared to CU participants. AD participants additionally showed more binding in the inferior and middle temporal gyri, cingulate, and precuneus compared to CU and MCI groups (Fig. 1). Comparisons between diagnostic groups irrespective of Aβ status reveal similar, albeit weaker tau differences. Mean voxelwise 18F-PI-2620 signal by diagnostic group is shown in eFigure 4.

4.3 Voxelwise SUVR AUC

The maximum voxelwise AUC across group comparisons was 0.88. Regions with an AUC > 0.7 for all diagnostic comparisons included the fusiform gyrus, parahippocampal cortex, amygdala, and middle and inferior temporal gyri. For CU versus AD, the cingulate, precuneus, frontal, and occipital regions also exceeded an AUC of 0.7 (Fig. 1).

4.4 Best-performing ROI and cut-point for classifying cognitive diagnostic status

AUROC results showed that the medial temporal ROI had the highest Youden index for all diagnostic comparisons, and was acceptable for differentiating CU from MCI, AD, and CI. When separating CU from both AD and CI, the cut-point for this ROI was 1.26 and when separating CU from MCI it was 1.28 (Table 2). SUVRs in all regions successfully distinguished CU from AD. See eTable 1 for comprehensive results.

Table 2.

Results of classification methods.

Best-performing ROI: MTL compositeSUVR AUROCAUROC
(predicted probabilities)
2 SD+
CU vs. MCICU vs. ADCU vs. CICU vs. MCICU vs. ADCU vs. CICU vs. MCICU vs. ADCU vs. CI
Optimal cut-point 1.28 1.26 1.26 — — — 1.32 1.32 1.32 
Youden 0.62 0.68 0.63 0.61 0.66 0.62 0.52 0.62 0.55 
Sensitivity 0.67 0.75 0.71 0.71 0.68 0.72 0.54 0.64 0.58 
Specificity 0.95 0.93 0.92 0.90 0.98 0.90 0.97 0.98 0.98 
Accuracy 0.93 0.92 0.90 0.89 0.97 0.88 0.94 0.96 0.93 
AUC 0.81 0.84 0.82 0.87 0.85 0.85 
Best-performing ROI: MTL compositeSUVR AUROCAUROC
(predicted probabilities)
2 SD+
CU vs. MCICU vs. ADCU vs. CICU vs. MCICU vs. ADCU vs. CICU vs. MCICU vs. ADCU vs. CI
Optimal cut-point 1.28 1.26 1.26 — — — 1.32 1.32 1.32 
Youden 0.62 0.68 0.63 0.61 0.66 0.62 0.52 0.62 0.55 
Sensitivity 0.67 0.75 0.71 0.71 0.68 0.72 0.54 0.64 0.58 
Specificity 0.95 0.93 0.92 0.90 0.98 0.90 0.97 0.98 0.98 
Accuracy 0.93 0.92 0.90 0.89 0.97 0.88 0.94 0.96 0.93 
AUC 0.81 0.84 0.82 0.87 0.85 0.85 

Performance metrics for the MTL composite (volume weighted average of the entorhinal, parahippocampus, and amygdala SUVRs), the best-performing ROI in the AUROC when using mean SUVRs and predicted probabilities from the GMMs. All CU participants were Aβ- and all CI participants were Aβ+. Results for the AUROC in the full spectrum of participants, regardless of Aβ status, is in eTable 4.

4.5 AUROC using predicted probabilities from GMM

AUROC results using predicted probabilities (eTable 2) also showed that the medial temporal ROI had the highest Youden index across diagnostic classifications. AUROC using predicted probabilities in all regions successfully distinguished CU from AD.

4.6 2SD+

Using the 2SD+ method, a cut-point of 1.32 was determined for the medial temporal ROI (Table 2), with the only acceptable Youden index distinguishing CU versus AD (>0.60).

4.7 Tau cut-points without regard to Aß positivity

Of the 879 participants, 204 did not meet the Aβ-stratification criteria, including 130 Aβ-positive CU participants (14% Hispanic, 14% NHB, and 23% NHW), 72 Aβ-negative MCI participants, (73% Hispanic, 53% NHB, and 51% NHW), and 2 Aβ-negative participants with dementia (1 Hispanic; 1 NHW). Aβ status by diagnostic and ethnoracial group is shown in eTable 3.

In the full spectrum (eTable 4), AUROC analyses showed that continuous global Aβ best differentiated CU from dementia, with the highest Youden index (0.76). Discrimination for all measures was weaker for CU versus MCI and CU versus CI, with Youden indexes below 0.35, suggesting that tau cut-points are effective in explaining cognitive status predominantly in Aβ-positive individuals.

4.8 Differences in cut-point performance across ethnoracial groups

Demographics by ethnoracial group are shown in Table 3. Mean SUVR by ethnoracial group can be found in eTable 5. The 1.26 cut-point performed acceptably in Hispanic and NHW participants, but not in NHB participants (Table 4). When AUROC were fit in each ethnoracial group separately, the medial temporal composite consistently showed the highest Youden index (eTable 6).

Table 3.

Participant demographics by ethnoracial group.

Hispanic
(N = 186)
Non-Hispanic Black
(N = 209)
Non-Hispanic White
(N = 280)
Overall
(N = 675)
p-value
Aβ- CU 167 (89%) 183 (88%) 249 (89%) 599 (89%) 
Aβ+ MCI 12 (7%) 17 (8%) 19 (7%) 48 (7%) 
Aβ+ AD 7 (4%) 9 (4%) 12 (4%) 28 (4%) 
Age 64.14 ± 8.49 61.85 ± 7.46 68.81 ± 8.05 65.37 ± 8.54 <0.001 
Sex (%F) 128 (69%) 141 (68%) 160 (57%) 429 (64%) 0.03 
Education (y) 11.32 ± 4.04 14.98 ± 2.71 15.87 ± 2.36 14.34 ± 3.56 <0.001 
Global Aβ 1.03 ± 0.15 1.02 ± 0.11 1.03 ± 0.16 1.02 ± 0.14 0.72 
Centiloids 11.55 ± 23.30 9.84 ± 17.53 12.02 ± 24.92 11.22 ± 22.40 0.72 
Hippocampal vol 3234.42 ± 426.61 3170.94 ± 388.93 3255.86 ± 406.81 3223.64 ± 408.03 0.10 
APOE4+ 32 (17%) 67 (32%) 72 (26%) 171 (25%) 0.001 
Dx hypertension 119 (64%) 161 (77%) 175 (63%) 455 (67%) 0.001 
Dx type II diabetes 68 (37%) 59 (28%) 50 (18%) 177 (26%) 0.28 
Dx dyslipidemia 147 (79%) 123 (59%) 202 (72%) 472 (70%) <0.001 
BMI 30.93 ± 5.82 33.52 ± 8.38 29.87 ± 6.29 31.30 ± 7.06 <0.001 
MMSE total 27.02 ± 2.91 27.74 ± 2.66 28.75 ± 1.94 27.96 ± 2.57 <0.01 
LM-II A+B total 21.83 ± 8.20 21.20 ± 8.19 26.24 ± 8.72 23.47 ± 8.73 <0.001 
DS total 12.46 ± 3.39 14.94 ± 3.55 16.61 ± 3.76 14.95 ± 3.97 <0.001 
Hispanic
(N = 186)
Non-Hispanic Black
(N = 209)
Non-Hispanic White
(N = 280)
Overall
(N = 675)
p-value
Aβ- CU 167 (89%) 183 (88%) 249 (89%) 599 (89%) 
Aβ+ MCI 12 (7%) 17 (8%) 19 (7%) 48 (7%) 
Aβ+ AD 7 (4%) 9 (4%) 12 (4%) 28 (4%) 
Age 64.14 ± 8.49 61.85 ± 7.46 68.81 ± 8.05 65.37 ± 8.54 <0.001 
Sex (%F) 128 (69%) 141 (68%) 160 (57%) 429 (64%) 0.03 
Education (y) 11.32 ± 4.04 14.98 ± 2.71 15.87 ± 2.36 14.34 ± 3.56 <0.001 
Global Aβ 1.03 ± 0.15 1.02 ± 0.11 1.03 ± 0.16 1.02 ± 0.14 0.72 
Centiloids 11.55 ± 23.30 9.84 ± 17.53 12.02 ± 24.92 11.22 ± 22.40 0.72 
Hippocampal vol 3234.42 ± 426.61 3170.94 ± 388.93 3255.86 ± 406.81 3223.64 ± 408.03 0.10 
APOE4+ 32 (17%) 67 (32%) 72 (26%) 171 (25%) 0.001 
Dx hypertension 119 (64%) 161 (77%) 175 (63%) 455 (67%) 0.001 
Dx type II diabetes 68 (37%) 59 (28%) 50 (18%) 177 (26%) 0.28 
Dx dyslipidemia 147 (79%) 123 (59%) 202 (72%) 472 (70%) <0.001 
BMI 30.93 ± 5.82 33.52 ± 8.38 29.87 ± 6.29 31.30 ± 7.06 <0.001 
MMSE total 27.02 ± 2.91 27.74 ± 2.66 28.75 ± 1.94 27.96 ± 2.57 <0.01 
LM-II A+B total 21.83 ± 8.20 21.20 ± 8.19 26.24 ± 8.72 23.47 ± 8.73 <0.001 
DS total 12.46 ± 3.39 14.94 ± 3.55 16.61 ± 3.76 14.95 ± 3.97 <0.001 

Group comparison (differences between ethnoracial groups) p-values were derived using Kruskal-Wallis tests for continuous variables and chi-square tests for categorical variables (α = 0.05). Continuous variables are listed as mean (±standard deviation). Categorical variables are listed as number (percent). Ten participants were missing BMI data, 3 missing MMSE data, 2 missing Digit Span data, and 2 missing hippocampal volume. Centiloids were calculated using this equation: CL = (159.08 × SUVRFBB) − 151.65 based on ADNI3 processing for FBB (Kolibash et al., 2020).

Abbreviations: Dx = diagnosis, Hippocampal Vol = hippocampal volume, BMI = body mass index, MMSE = Mini Mental State Examination, LM-II = Logical Memory-II, DS = Digit Span.

Table 4.

Cut-point performance across ethnoracial groups.

AUROC: 1.262 SD+: 1.32
Method & cut-pointHispanicNHWNHBHispanicNHWNHB
Youden 0.78 0.66 0.45 0.71 0.55 0.45 
Sensitivity 0.84 0.74 0.54 0.74 0.58 0.46 
Specificity 0.94 0.92 0.91 0.97 0.97 0.98 
Accuracy 0.93 0.90 0.86 0.95 0.93 0.92 
AUROC: 1.262 SD+: 1.32
Method & cut-pointHispanicNHWNHBHispanicNHWNHB
Youden 0.78 0.66 0.45 0.71 0.55 0.45 
Sensitivity 0.84 0.74 0.54 0.74 0.58 0.46 
Specificity 0.94 0.92 0.91 0.97 0.97 0.98 
Accuracy 0.93 0.90 0.86 0.95 0.93 0.92 

In CU Aβ- and CI Aβ+ participants, we tested the tau cut-point of 1.26 to classify participants as cognitively impaired. The 2SD+ cut-point was 1.32 (2SD+ above the mean SUVR in the medial temporal ROI of cognitively-unimpaired participants).

Using 18F-PI-2620 we have identified an ROI and corresponding cut-point that differentiates cognitive status in a multi-ethnic/racial cohort. The medial temporal composite had the highest Youden index across all diagnostic classifications, indicating that this composite was sensitive to the earliest clinically-relevant tau accumulations in this sample. The high specificity of tau in this region suggests that here: 1) the presence of tau is not overestimated and 2) the presence of tau is a good indicator of cognitive impairment. However, studies have shown that tau accumulation in the entorhinal cortex slows as disease progresses (Jack, Wiste, et al., 2018; Villemagne et al., 2021), necessitating future research to evaluate the effectiveness of this ROI in predicting longitudinal changes in cognition and tau accumulation. The sensitivity observed across all ROIs was notably low, particularly in NHB participants. This may indicate the influence of other factors that contribute more to cognitive impairment in NHB participants than tau alone (Harrison et al., 2025). When all participants were included (irrespective of Aβ status) Aβ was more effective than tau at distinguishing cognitive impairment. This suggests that 1) in our multi-ethnic cohort, consistent with prior work (Robinson et al., 2024), tau in the absence of Aβ positivity does not meaningfully explain cognitive impairment and 2) tau positivity using these cut-offs should only be used to identify clinically-meaningful tau levels in Aβ-positive individuals.

In past work in NHW participants, 54% of MCI patients and 81.4% of dementia patients were Aβ positive, similar to the 49% and 92% Aβ-positive NHW MCI and dementia patients we found here, respectively. However, also as reflected in our work, Aβ-positivity rates may vary by ethnoracial group (Jang et al., 2024). In cognitively-impaired Aβ-positive individuals, the presence of tau within the normal range represents an atypical disease trajectory, with approximately 20–40% of Aβ-positive individuals remaining tau-negative depending on cohort composition and diagnostic criteria (Josephs et al., 2022; S. M. Landau et al., 2024; Spina et al., 2021) consistent with the 30% tau negativity in Aβ-positive cognitively-impaired participants in our study. For instance, past work using flortaucipir found that tau positivity in the entorhinal cortex was 80.2% in Aβ-positive dementia patients, 50.2% in Aβ-positive MCI patients, and 6.3% in cognitively-unimpaired people (Ossenkoppele et al., 2021). Our tau-positivity rate in Aβ-positive dementia patients was similar at 75%. However, tau positivity was higher in our sample for Aβ-positive MCI patients (67%) and CU participants without respect to Aβ status (12%). The relatively high number of Aβ-negative MCI cases among Hispanic and NHB participants further supports the possibility that non-amyloid, non-tau mechanisms may play a role in disease progression among these groups, warranting further investigation. Future work should also evaluate the extent to which the region of interest used, the ethnoracial composition of the sample, or the tracer used affects tau-positivity status.

Several studies have found that NHB individuals who achieve low scores on neuropsychological exams have lower Aβ-positivity rates than NHW participants (Carrillo & Mahinrad, 2024; Morris et al., 2019; Raman et al., 2021), suggesting that cognitive impairment or clinical symptoms may be more strongly influenced by non-AD pathways, including cerebrovascular injury—particularly given the higher prevalence of cardiovascular disease in NHB populations (Hines et al., 2023). However, lower neuropsychological test scores may reflect socioeconomic and educational disparities rather than AD pathology, potentially resulting in overdiagnosis of NHB individuals with MCI when a single time point is considered (Raman et al., 2021). To address this, we compared the cut-point performance between participants with higher education and those with a high-school degree and observed no significant difference in AUROC between the groups (eTable 7). NHB participants in the current study are also, on average, younger than the Hispanic and NHW participants, which may increase the likelihood that cognitive impairment is attributable to pathologies other than Aβ and tau. When available, future research in diverse populations should incorporate additional information about comorbidities and other neuropathologies to determine whether these factors influence cut-point values or their utility.

Although use of the 2SD+ method resulted in a more conservative cut-point and similar accuracy to ROC, it resulted in a Youden index that was lower for all diagnostic group comparisons. The AUROC method incorporates clinical relevance (through sensitivity and specificity) to determine the optimal cut-points. While the 2SD+ method provides a stricter threshold, AUROC may be preferable for identifying clinically-meaningful distinctions between groups. We recognize that using the Youden index prioritizes overall diagnostic accuracy by maximizing the sum of sensitivity and specificity but may overlook context-specific priorities where the costs of false positives and false negatives differ.

The strengths of this study include the multi-ethnoracial composition of the sample and the novelty of 18F-PI-2620. Although the heterogeneity of the sample affected sensitivity, the results point to a gap in knowledge as to what other factors influence the clinical phenotype in more diverse samples. We used the cut-point obtained from the full model and applied it to each ethnoracial group, acknowledging limitations due to key differences between the three groups. However, we believe this approach demonstrates the challenges of defining pathological protein levels within heterogeneous samples. Additionally, similar results were observed when cut-points were calculated independently for each group, though the smaller sample sizes in some groups limit the robustness and generalizability of these findings. Of note, the prevalence of cognitively-impaired Hispanic participants in this sub-sample was lower than in the larger HABS-HD sample. In the full spectrum (regardless of Aβ status), we included 72 new Aβ-negative participants with MCI across ethnoracial groups but only added two Aβ-negative participants with dementia. As a result, nearly all participants with dementia were Aβ positive, which likely explains why Aβ status was a stronger predictor of dementia than tau in our full sample, despite previous research suggesting that tau correlates more closely with cognitive status than Aβ. Finally, the cross-sectional nature of our study should be considered when interpreting the results.

We have established tau cut-points for cognitive diagnosis using 18F-PI-2620. Our data demonstrate the utility of the medial temporal ROI to identify clinically relevant tau levels in Hispanic and NHW individuals.

Data used in preparation of this manuscript preparation are stored, managed, and processed by the University of Southern California (USC) Laboratory of Neuroimaging (https://ida.loni.usc.edu/). All data are available upon request.

V.R.T.: Conceptualization, Data Collection, Formal Analysis, Data Curation, Writing—Original Draft, and Visualization. K.V.W.: Data Analysis, Data Curation. N.N.L., J.A.T., M.W.H., S.G., P.W., A.G., T.B., T.L.: Data Curation. R.R., R.A.R., B.T.C., M.P., A.D.C., B.M.A., K.L.M., Z.Z., R.R.N., K.Y., S.E.O., and A.W.T.: Methodology, Review & Editing. M.N.B.: Conceptualization, Methodology, Validation, Resources, Writing—Review & Editing, and Supervision.

The authors declare no competing interests.

Research reported on this publication was supported by the National Institute on Aging of the National Institutes of Health under Award Numbers R01AG054073, R01AG058533, R01AG070862, P41EB015922, U19AG078109 and by the Office of The Director, National Institutes Of Health of the National Institutes of Health under Award Number S10OD032285. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank the study participants for their time and generosity and the HABS-HD staff for their hard work. We are grateful to the HABS-HD study team: HABS-HD MPIs: Sid E O’Bryant, Kristine Yaffe, Arthur Toga, Robert Rissman, & Leigh Johnson; and the HABS-HD Investigators: Meredith Braskie, Kevin King, James R. Hall, Melissa Petersen, Raymond Palmer, Robert Barber, Yonggang Shi, Fan Zhang, Rajesh Nandy, Roderick McColl, David Mason, Bradley Christian, Nicole Phillips, Stephanie Large, Joe Lee, Badri Vardarajan, Monica Rivera Mindt, Amrita Cheema, Lisa Barnes, Mark Mapstone, Annie Cohen, Amy Kind, Ozioma Okonkwo, Raul Vintimilla, Zhengyang Zhou, Michael Donohue, Rema Raman, Matthew Borzage, Michelle Mielke, Beau Ances, Ganesh Babulal, Jorge Llibre-Guerra, Carl Hill, and Rocky Vig.

Supplementary material for this article is available with the online version here: https://doi.org/10.1162/IMAG.a.41

Aliaga
,
A.
,
Therriault
,
J.
,
Quispialaya
,
K. M.
,
Aliaga
,
A.
,
Hopewell
,
R.
,
Rahmouni
,
N.
,
Macedo
,
A. C.
,
Kunach
,
P.
,
Soucy
,
J.-P.
,
Massarweh
,
G.
,
Diaz
,
A. A.
,
Pascoal
,
T. A.
,
Rocha
,
A.
,
Guiot
,
M.-C.
,
Machado
,
L. S.
,
Bastiani
,
M. A. D.
,
Souza
,
D. G. de
,
Souza
,
D. O.
,
Gauthier
,
S.
, …
Rosa-Neto
,
P.
(
2024
).
Comparison between brain and cerebellar autoradiography using [18F]Flortaucipir, [18F]MK6240, and [18F]PI2620 in postmortem human brain tissue
.
Journal of Nuclear Medicine
,
66
(
1
),
123
129
. https://doi.org/10.2967/jnumed.124.267539
Betthauser
,
T. J.
,
Cody
,
K. A.
,
Zammit
,
M. D.
,
Murali
,
D.
,
Converse
,
A. K.
,
Barnhart
,
T. E.
,
Stone
,
C. K.
,
Rowley
,
H. A.
,
Johnson
,
S. C.
, &
Christian
,
B. T.
(
2019
).
In vivo characterization and quantification of neurofibrillary tau PET radioligand 18 F-MK-6240 in humans from Alzheimer disease dementia to young controls
.
Journal of Nuclear Medicine
,
60
(
1
),
93
99
. https://doi.org/10.2967/jnumed.118.209650
Botha
,
H.
,
Mantyh
,
W. G.
,
Murray
,
M. E.
,
Knopman
,
D. S.
,
Przybelski
,
S. A.
,
Wiste
,
H. J.
,
Graff-Radford
,
J.
,
Josephs
,
K. A.
,
Schwarz
,
C. G.
,
Kremers
,
W. K.
,
Boeve
,
B. F.
,
Petersen
,
R. C.
,
Machulda
,
M. M.
,
Parisi
,
J. E.
,
Dickson
,
D. W.
,
Lowe
,
V.
,
Jack
,
C. R.
, Jr, &
Jones
,
D. T.
(
2018
).
FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis
.
Brain
,
141
(
4
),
1201
1217
. https://doi.org/10.1093/brain/awy049
Braak
,
H.
, &
Braak
,
E.
(
1991
).
Neuropathological stageing of Alzheimer-related changes
.
Acta Neuropathologica
,
82
(
4
),
239
259
. https://doi.org/10.1007/BF00308809
Bullich
,
S.
,
Mueller
,
A.
,
De Santi
,
S.
,
Koglin
,
N.
,
Krause
,
S.
,
Kaplow
,
J.
,
Kanekiyo
,
M.
,
Roé-Vellvé
,
N.
,
Perrotin
,
A.
,
Jovalekic
,
A.
,
Scott
,
D.
,
Gee
,
M.
,
Stephens
,
A.
, &
Irizarry
,
M.
(
2022
).
Evaluation of tau deposition using 18F-PI-2620 PET in MCI and early AD subjects—A MissionAD tau sub-study
.
Alzheimer’s Research & Therapy
,
14
(
1
),
105
. https://doi.org/10.1186/s13195-022-01048-x
Carrillo
,
M. C.
, &
Mahinrad
,
S.
(
2024
).
Navigating complexities of racial disparities in Alzheimer disease biomarkers
.
Nature Reviews Neurology
,
20
(
4
),
205
206
. https://doi.org/10.1038/s41582-024-00930-6
Charil
,
A.
,
Shcherbinin
,
S.
,
Southekal
,
S.
,
Devous
,
M. D.
,
Mintun
,
M.
,
Murray
,
M. E.
,
Miller
,
B. B.
, &
Schwarz
,
A. J.
(
2019
).
Tau Subtypes of Alzheimer’s disease determined in vivo using flortaucipir PET imaging
.
Journal of Alzheimer’s Disease
,
71
(
3
),
1037
1048
. https://doi.org/10.3233/JAD-190264
Chen
,
F.
,
Xue
,
Y.
,
Tan
,
M. T.
, &
Chen
,
P.
(
2015
).
Efficient statistical tests to compare Youden index: Accounting for contingency correlation
.
Statistics in Medicine
,
34
(
9
),
1560
1576
. https://doi.org/10.1002/sim.6432
Cho
,
H.
,
Lee
,
H. S.
,
Choi
,
J. Y.
,
Lee
,
J. H.
,
Ryu
,
Y. H.
,
Lee
,
M. S.
, &
Lyoo
,
C. H.
(
2018
).
Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum
.
Neurobiology of Aging
,
68
,
76
84
. https://doi.org/10.1016/j.neurobiolaging.2018.04.007
Dodich
,
A.
,
Mendes
,
A.
,
Assal
,
F.
,
Chicherio
,
C.
,
Rakotomiaramanana
,
B.
,
Andryszak
,
P.
,
Festari
,
C.
,
Ribaldi
,
F.
,
Scheffler
,
M.
,
Schibli
,
R.
,
Schwarz
,
A. J.
,
Zekry
,
D.
,
Lövblad
,
K.-O.
,
Boccardi
,
M.
,
Unschuld
,
P. G.
,
Gold
,
G.
,
Frisoni
,
G. B.
, &
Garibotto
,
V.
(
2020
).
The A/T/N model applied through imaging biomarkers in a memory clinic
.
European Journal of Nuclear Medicine and Molecular Imaging
,
47
(
2
),
247
255
. https://doi.org/10.1007/s00259-019-04536-9
Ferreira
,
D.
,
Nordberg
,
A.
, &
Westman
,
E.
(
2020
).
Biological subtypes of Alzheimer disease: A systematic review and meta-analysis
.
Neurology
,
94
(
10
),
436
448
. https://doi.org/10.1212/WNL.0000000000009058
Garrett
,
S. L.
,
McDaniel
,
D.
,
Obideen
,
M.
,
Trammell
,
A. R.
,
Shaw
,
L. M.
,
Goldstein
,
F. C.
, &
Hajjar
,
I.
(
2019
).
Racial disparity in cerebrospinal fluid amyloid and tau biomarkers and associated cutoffs for mild cognitive impairment
.
JAMA Network Open
,
2
(
12
),
e1917363
. https://doi.org/10.1001/jamanetworkopen.2019.17363
Gleason
,
C. E.
,
Zuelsdorff
,
M.
,
Gooding
,
D. C.
,
Kind
,
A. J. H.
,
Johnson
,
A. L.
,
James
,
T. T.
,
Lambrou
,
N. H.
,
Wyman
,
M. F.
,
Ketchum
,
F. B.
,
Gee
,
A.
,
Johnson
,
S. C.
,
Bendlin
,
B. B.
, &
Zetterberg
,
H.
(
2022
).
Alzheimer’s disease biomarkers in Black and non-Hispanic White cohorts: A contextualized review of the evidence
.
Alzheimer’s & Dementia
,
18
(
8
),
1545
1564
. https://doi.org/10.1002/alz.12511
Guo
,
T.
,
Korman
,
D.
,
La Joie
,
R.
,
Shaw
,
L. M.
,
Trojanowski
,
J. Q.
,
Jagust
,
W. J.
,
Landau
,
S. M.
, &
for the Alzheimer’s Disease Neuroimaging Initiative
. (
2020
).
Normalization of CSF pTau measurement by Aβ40 improves its performance as a biomarker of Alzheimer’s disease
.
Alzheimer’s Research & Therapy
,
12
(
1
),
97
. https://doi.org/10.1186/s13195-020-00665-8
Hanseeuw
,
B. J.
,
Betensky
,
R. A.
,
Jacobs
,
H. I. L.
,
Schultz
,
A. P.
,
Sepulcre
,
J.
,
Becker
,
J. A.
,
Cosio
,
D. M. O.
,
Farrell
,
M.
,
Quiroz
,
Y. T.
,
Mormino
,
E. C.
,
Buckley
,
R. F.
,
Papp
,
K. V.
,
Amariglio
,
R. A.
,
Dewachter
,
I.
,
Ivanoiu
,
A.
,
Huijbers
,
W.
,
Hedden
,
T.
,
Marshall
,
G. A.
,
Chhatwal
,
J. P.
, …
Johnson
,
K.
(
2019
).
Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study
.
JAMA Neurology
,
76
(
8
),
915
924
. https://doi.org/10.1001/jamaneurol.2019.1424
Harrison
,
T. M.
,
Ward
,
T.
,
Taggett
,
J.
,
Maillard
,
P.
,
Lockhart
,
S. N.
,
Jung
,
Y.
,
Lovato
,
L. C.
,
Koeppe
,
R.
,
Jagust
,
W. J.
,
Harvey
,
D.
,
Masdeu
,
J. C.
,
Oh
,
H.
,
Gitelman
,
D. R.
,
Aggarwal
,
N. T.
,
Espeland
,
M. A.
,
Cleveland
,
M. L.
,
Whitmer
,
R.
,
Farias
,
S. T.
,
Salloway
,
S.
,…
U.S. POINTER Study Group
. (
2025
).
The POINTER Imaging baseline cohort: Associations between multimodal neuroimaging biomarkers, cardiovascular health, and cognition
.
Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association
,
21
(
1
),
e14399
. https://doi.org/10.1002/alz.14399
Hines
,
A. L.
,
Albert
,
M. A.
,
Blair
,
J. P.
,
Crews
,
D. C.
,
Cooper
,
L. A.
,
Long
,
D. L.
, &
Carson
,
A. P.
(
2023
).
Neighborhood factors, individual stressors, and cardiovascular health among black and white adults in the US: The reasons for geographic and racial differences in stroke (REGARDS) study
.
JAMA Network Open
,
6
(
9
),
e2336207
. https://doi.org/10.1001/jamanetworkopen.2023.36207
Jack
,
C. R.
,
Andrews
,
J. S.
,
Beach
,
T. G.
,
Buracchio
,
T.
,
Dunn
,
B.
,
Graf
,
A.
,
Hansson
,
O.
,
Ho
,
C.
,
Jagust
,
W.
,
McDade
,
E.
,
Molinuevo
,
J. L.
,
Okonkwo
,
O. C.
,
Pani
,
L.
,
Rafii
,
M. S.
,
Scheltens
,
P.
,
Siemers
,
E.
,
Snyder
,
H. M.
,
Sperling
,
R.
,
Teunissen
,
C. E.
, &
Carrillo
,
M. C.
(
2024
).
Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup
.
Alzheimer’s & Dementia
,
20
(
8
),
5143
5169
. https://doi.org/10.1002/alz.13859
Jack
,
C. R.
,
Bennett
,
D. A.
,
Blennow
,
K.
,
Carrillo
,
M. C.
,
Dunn
,
B.
,
Haeberlein
,
S. B.
,
Holtzman
,
D. M.
,
Jagust
,
W.
,
Jessen
,
F.
,
Karlawish
,
J.
,
Liu
,
E.
,
Molinuevo
,
J. L.
,
Montine
,
T.
,
Phelps
,
C.
,
Rankin
,
K. P.
,
Rowe
,
C. C.
,
Scheltens
,
P.
,
Siemers
,
E.
,
Snyder
,
H. M.
, …
Silverberg
,
N.
(
2018
).
NIA-AA research framework: Toward a biological definition of Alzheimer’s disease
.
Alzheimer’s & Dementia
,
14
(
4
),
535
562
. https://doi.org/10.1016/j.jalz.2018.02.018
Jack
,
C. R.
, Jr
,
Wiste
,
H. J.
,
Therneau
,
T. M.
,
Weigand
,
S. D.
,
Knopman
,
D. S.
,
Mielke
,
M. M.
,
Lowe
,
V. J.
,
Vemuri
,
P.
,
Machulda
,
M. M.
,
Schwarz
,
C. G.
,
Gunter
,
J. L.
,
Senjem
,
M. L.
,
Graff-Radford
,
J.
,
Jones
,
D. T.
,
Roberts
,
R. O.
,
Rocca
,
W. A.
, &
Petersen
,
R. C.
(
2019
).
Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia
.
JAMA
,
321
(
23
),
2316
2325
. https://doi.org/10.1001/jama.2019.7437
Jack
,
C. R.
,
Wiste
,
H. J.
,
Schwarz
,
C. G.
,
Lowe
,
V. J.
,
Senjem
,
M. L.
,
Vemuri
,
P.
,
Weigand
,
S. D.
,
Therneau
,
T. M.
,
Knopman
,
D. S.
,
Gunter
,
J. L.
,
Jones
,
D. T.
,
Graff-Radford
,
J.
,
Kantarci
,
K.
,
Roberts
,
R. O.
,
Mielke
,
M. M.
,
Machulda
,
M. M.
, &
Petersen
,
R. C.
(
2018
).
Longitudinal tau PET in ageing and Alzheimer’s disease
.
Brain: A Journal of Neurology
,
141
(
5
),
1517
1528
. https://doi.org/10.1093/brain/awy059
Jack
,
C. R.
,
Wiste
,
H. J.
,
Weigand
,
S. D.
,
Therneau
,
T. M.
,
Lowe
,
V. J.
,
Knopman
,
D. S.
,
Gunter
,
J. L.
,
Senjem
,
M. L.
,
Jones
,
D. T.
,
Kantarci
,
K.
,
Machulda
,
M. M.
,
Mielke
,
M. M.
,
Roberts
,
R. O.
,
Vemuri
,
P.
,
Reyes
,
D. A.
, &
Petersen
,
R. C.
(
2017
).
Defining imaging biomarker cut-points for brain aging and Alzheimer’s disease
.
Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association
,
13
(
3
),
205
216
. https://doi.org/10.1016/j.jalz.2016.08.005
Jagust
,
W.
(
2018
).
Imaging the evolution and pathophysiology of Alzheimer disease
.
Nature Reviews. Neuroscience
,
19
(
11
),
687
700
. https://doi.org/10.1038/s41583-018-0067-3
Jang
,
H.
,
Chun
,
M. Y.
,
Yun
,
J.
,
Kim
,
J. P.
,
Kang
,
S. H.
,
Weiner
,
M.
,
Kim
,
H. J.
,
Na
,
D. L.
,
Hong
,
C.
,
Son
,
S. J.
,
Roh
,
H. W.
,
Lee
,
T.
,
Lee
,
E.
,
Lee
,
E. H.
,
Shin
,
D.
,
Ham
,
H.
,
Gu
,
Y.
,
Kim
,
Y.
,
Kim
,
C.
, …
Seo
,
S. W.
(
2024
).
Ethnic differences in the prevalence of amyloid positivity and cognitive trajectories
.
Alzheimer’s & Dementia
,
20
(
11
),
7556
7566
. https://doi.org/10.1002/alz.14247
Josephs
,
K. A.
,
Weigand
,
S. D.
, &
Whitwell
,
J. L.
(
2022
).
Characterizing amyloid-positive individuals with normal tau PET levels after 5 years
.
Neurology
,
98
(
22
),
e2282
e2292
. https://doi.org/10.1212/WNL.0000000000200287
Kolibash
,
S. A.
,
Davneet
,
M.
, &
Lopresti
,
B. J.
(
2020
).
Centiloid Level-2 Analysis of [18F]Florbetaben (FBB) and [18F]Florbetapir (FBP) PET Image Data using the ADNI Pipeline
. https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/pet/ADNI%20Centiloids%20Final.pdf
Kroth
,
H.
,
Oden
,
F.
,
Molette
,
J.
,
Schieferstein
,
H.
,
Capotosti
,
F.
,
Mueller
,
A.
,
Berndt
,
M.
,
Schmitt-Willich
,
H.
,
Darmency
,
V.
,
Gabellieri
,
E.
,
Boudou
,
C.
,
Juergens
,
T.
,
Varisco
,
Y.
,
Vokali
,
E.
,
Hickman
,
D. T.
,
Tamagnan
,
G.
,
Pfeifer
,
A.
,
Dinkelborg
,
L.
,
Muhs
,
A.
, &
Stephens
,
A.
(
2019
).
Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies
.
European Journal of Nuclear Medicine and Molecular Imaging
,
46
(
10
),
2178
2189
. https://doi.org/10.1007/s00259-019-04397-2
La Joie
,
R.
,
Visani
,
A. V.
,
Baker
,
S. L.
,
Brown
,
J. A.
,
Bourakova
,
V.
,
Cha
,
J.
,
Chaudhary
,
K.
,
Edwards
,
L.
,
Iaccarino
,
L.
,
Janabi
,
M.
,
Lesman-Segev
,
O. H.
,
Miller
,
Z. A.
,
Perry
,
D. C.
,
O’Neil
,
J. P.
,
Pham
,
J.
,
Rojas
,
J. C.
,
Rosen
,
H. J.
,
Seeley
,
W. W.
,
Tsai
,
R. M.
, …
Rabinovici
,
G. D.
(
2020
).
Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET
.
Science Translational Medicine
,
12
(
524
),
eaau5732
. https://doi.org/10.1126/scitranslmed.aau5732
Landau
,
S.
,
Koeppe
,
R.
, &
Jagust
,
W.
(
2011
).
Florbetaben processing and positivity threshold derivation
. https://doi.org/10.1186/s13195-021-00836-1
Landau
,
S. M.
,
Lee
,
J.
,
Murphy
,
A.
,
Ward
,
T. J.
,
Harrison
,
T. M.
,
Baker
,
S. L.
,
DeCarli
,
C.
,
Harvey
,
D.
,
Tosun
,
D.
,
Weiner
,
M. W.
,
Koeppe
,
R. A.
,
Jagust
,
W. J.
, &
Alzheimer’s Disease Neuroimaging Initiative
. (
2024
).
Individuals with Alzheimer’s disease and low tau burden: Characteristics and implications
.
Alzheimer’s & Dementia
,
20
(
3
),
2113
2127
. https://doi.org/10.1002/alz.13609
Lennon
,
J. C.
,
Aita
,
S. L.
,
Bene
,
V. A. D.
,
Rhoads
,
T.
,
Resch
,
Z. J.
,
Eloi
,
J. M.
, &
Walker
,
K. A.
(
2022
).
Black and White individuals differ in dementia prevalence, risk factors, and symptomatic presentation
.
Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association
,
18
(
8
),
1461
1471
. https://doi.org/10.1002/alz.12509
Leuzy
,
A.
,
Binette
,
A. P.
,
Vogel
,
J. W.
,
Klein
,
G.
,
Borroni
,
E.
,
Tonietto
,
M.
,
Strandberg
,
O.
,
Mattsson-Carlgren
,
N.
,
Palmqvist
,
S.
,
Pontecorvo
,
M. J.
,
Iaccarino
,
L.
,
Stomrud
,
E.
,
Ossenkoppele
,
R.
,
Smith
,
R.
,
Hansson
,
O.
, &
Alzheimer’s Disease Neuroimaging Initiative
. (
2023
).
Comparison of group-level and individualized brain regions for measuring change in longitudinal tau positron emission tomography in Alzheimer disease
.
JAMA Neurology
,
80
(
6
),
614
623
. https://doi.org/10.1001/jamaneurol.2023.1067
Leuzy
,
A.
,
Pascoal
,
T. A.
,
Strandberg
,
O.
,
Insel
,
P.
,
Smith
,
R.
,
Mattsson-Carlgren
,
N.
,
Benedet
,
A. L.
,
Cho
,
H.
,
Lyoo
,
C. H.
,
La Joie
,
R.
,
Rabinovici
,
G. D.
,
Ossenkoppele
,
R.
,
Rosa-Neto
,
P.
, &
Hansson
,
O.
(
2021
).
A multicenter comparison of [18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau PET tracers to detect a common target ROI for differential diagnosis
.
European Journal of Nuclear Medicine and Molecular Imaging
,
48
(
7
),
2295
2305
. https://doi.org/10.1007/s00259-021-05401-4
Leuzy
,
A.
,
Smith
,
R.
,
Ossenkoppele
,
R.
,
Santillo
,
A.
,
Borroni
,
E.
,
Klein
,
G.
,
Ohlsson
,
T.
,
Jögi
,
J.
,
Palmqvist
,
S.
,
Mattsson-Carlgren
,
N.
,
Strandberg
,
O.
,
Stomrud
,
E.
, &
Hansson
,
O.
(
2020
).
Diagnostic performance of RO948 F 18 tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders
.
JAMA Neurology
,
77
(
8
),
1
12
. https://doi.org/10.1001/jamaneurol.2020.0989
Lowe
,
V. J.
,
Wiste
,
H. J.
,
Senjem
,
M. L.
,
Weigand
,
S. D.
,
Therneau
,
T. M.
,
Boeve
,
B. F.
,
Josephs
,
K. A.
,
Fang
,
P.
,
Pandey
,
M. K.
,
Murray
,
M. E.
,
Kantarci
,
K.
,
Jones
,
D. T.
,
Vemuri
,
P.
,
Graff-Radford
,
J.
,
Schwarz
,
C. G.
,
Machulda
,
M. M.
,
Mielke
,
M. M.
,
Roberts
,
R. O.
,
Knopman
,
D. S.
, …
Jack
,
C. R.
(
2018
).
Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia
.
Brain: A Journal of Neurology
,
141
(
1
),
271
287
. https://doi.org/10.1093/brain/awx320
Maass
,
A.
,
Landau
,
S.
,
Baker
,
S. L.
,
Horng
,
A.
,
Lockhart
,
S. N.
,
La
Joie
, R.,
Rabinovici
,
G. D.
, &
Jagust
,
W. J.
(
2017
).
Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease
.
NeuroImage
,
157
,
448
463
. https://doi.org/10.1016/j.neuroimage.2017.05.058
Mathotaarachchi
,
S.
,
Wang
,
S.
,
Shin
,
M.
,
Pascoal
,
T. A.
,
Benedet
,
A. L.
,
Kang
,
M. S.
,
Beaudry
,
T.
,
Fonov
,
V. S.
,
Gauthier
,
S.
,
Labbe
,
A.
, &
Rosa-Neto
,
P.
(
2016
).
VoxelStats: A MATLAB package for multi-modal voxel-wise brain image analysis
.
Frontiers in Neuroinformatics
,
10
,
20
. https://doi.org/10.3389/fninf.2016.00020
Mormino
,
E. C.
,
Toueg
,
T. N.
,
Azevedo
,
C.
,
Castillo
,
J. B.
,
Guo
,
W.
,
Nadiadwala
,
A.
,
Corso
,
N.
,
Hall
,
J. N.
,
Fan
,
A.
,
Trelle
,
A. N.
,
Harrison
,
M.
,
Hunt
,
M.
,
Sha
,
S. J.
,
Deutsch
,
G.
,
James
,
M.
,
Fredericks
,
C. A.
,
Koran
,
M. E.
,
Zeineh
,
M.
,
Poston
,
K.
, …
Chin
,
F. T.
(
2021
).
Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases
.
European Journal of Nuclear Medicine and Molecular Imaging
,
48
(
7
),
2233
2244
. https://doi.org/10.1007/s00259-020-04923-7
Morris
,
J. C.
,
Schindler
,
S. E.
,
McCue
,
L. M.
,
Moulder
,
K. L.
,
Benzinger
,
T. L. S.
,
Cruchaga
,
C.
,
Fagan
,
A. M.
,
Grant
,
E.
,
Gordon
,
B. A.
,
Holtzman
,
D. M.
, &
Xiong
,
C.
(
2019
).
Assessment of racial disparities in biomarkers for Alzheimer disease
.
JAMA Neurology
,
76
(
3
),
264
273
. https://doi.org/10.1001/jamaneurol.2018.4249
Mueller
,
A.
,
Bullich
,
S.
,
Barret
,
O.
,
Madonia
,
J.
,
Berndt
,
M.
,
Papin
,
C.
,
Perrotin
,
A.
,
Koglin
,
N.
,
Kroth
,
H.
,
Pfeifer
,
A.
,
Tamagnan
,
G.
,
Seibyl
,
J. P.
,
Marek
,
K.
,
De Santi
,
S.
,
Dinkelborg
,
L. M.
, &
Stephens
,
A. W.
(
2020
).
Tau PET imaging with 18F-PI-2620 in patients with Alzheimer disease and healthy controls: A first-in-humans study
.
Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine
,
61
(
6
),
911
919
. https://doi.org/10.2967/jnumed.119.236224
Murray
,
M. E.
,
Graff-Radford
,
N. R.
,
Ross
,
O. A.
,
Petersen
,
R. C.
,
Duara
,
R.
, &
Dickson
,
D. W.
(
2011
).
Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study
.
The Lancet. Neurology
,
10
(
9
),
785
796
. https://doi.org/10.1016/S1474-4422(11)70156-9
O’Bryant
,
S. E.
,
Johnson
,
L. A.
,
Barber
,
R. C.
,
Braskie
,
M. N.
,
Christian
,
B.
,
Hall
,
J. R.
,
Hazra
,
N.
,
King
,
K.
,
Kothapalli
,
D.
,
Large
,
S.
,
Mason
,
D.
,
Matsiyevskiy
,
E.
,
McColl
,
R.
,
Nandy
,
R.
,
Palmer
,
R.
,
Petersen
,
M.
,
Philips
,
N.
,
Rissman
,
R. A.
,
Shi
,
Y.
, …
Yaffe
,
K.
(
2021
).
The Health & Aging Brain among Latino Elders (HABLE) study methods and participant characteristics
.
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
,
13
(
1
),
e12202
. https://doi.org/10.1002/dad2.12202
Ossenkoppele
,
R.
,
Leuzy
,
A.
,
Cho
,
H.
,
Sudre
,
C. H.
,
Strandberg
,
O.
,
Smith
,
R.
,
Palmqvist
,
S.
,
Mattsson-Carlgren
,
N.
,
Olsson
,
T.
,
Jögi
,
J.
,
Stormrud
,
E.
,
Ryu
,
Y. H.
,
Choi
,
J. Y.
,
Boxer
,
A. L.
,
Gorno-Tempini
,
M. L.
,
Miller
,
B. L.
,
Soleimani-Meigooni
,
D.
,
Iaccarino
,
L.
,
La Joie
,
R.
, …
Hansson
,
O.
(
2021
).
The impact of demographic, clinical, genetic, and imaging variables on tau PET status
.
European Journal of Nuclear Medicine and Molecular Imaging
,
48
(
7
),
2245
2258
. https://doi.org/10.1007/s00259-020-05099-w
Ossenkoppele
,
R.
,
Rabinovici
,
G. D.
,
Smith
,
R.
,
Cho
,
H.
,
Schöll
,
M.
,
Strandberg
,
O.
,
Palmqvist
,
S.
,
Mattsson
,
N.
,
Janelidze
,
S.
,
Santillo
,
A.
,
Ohlsson
,
T.
,
Jögi
,
J.
,
Tsai
,
R.
,
La Joie
,
R.
,
Kramer
,
J.
,
Boxer
,
A. L.
,
Gorno-Tempini
,
M. L.
,
Miller
,
B. L.
,
Choi
,
J. Y.
, …
Hansson
,
O.
(
2018
).
Discriminative accuracy of [18F]flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders
.
JAMA
,
320
(
11
),
1151
1162
. https://doi.org/10.1001/jama.2018.12917
Pascoal
,
T. A.
,
Shin
,
M.
,
Kang
,
M. S.
,
Chamoun
,
M.
,
Chartrand
,
D.
,
Mathotaarachchi
,
S.
,
Bennacef
,
I.
,
Therriault
,
J.
,
Ng
,
K. P.
,
Hopewell
,
R.
,
Bouhachi
,
R.
,
Hsiao
,
H.-H.
,
Benedet
,
A. L.
,
Soucy
,
J.-P.
,
Massarweh
,
G.
,
Gauthier
,
S.
, &
Rosa-Neto
,
P.
(
2018
).
In vivo quantification of neurofibrillary tangles with [18F]MK-6240
.
Alzheimer’s Research & Therapy
,
10
(
1
),
74
. https://doi.org/10.1186/s13195-018-0402-y
Raman
,
R.
,
Aisen
,
P.
,
Carillo
,
M. C.
,
Detke
,
M.
,
Grill
,
J. D.
,
Okonkwo
,
O. C.
,
Rivera-Mindt
,
M.
,
Sabbagh
,
M.
,
Vellas
,
B.
,
Weiner
,
M.
, &
Sperling
,
R.
(
2022
).
Tackling a major deficiency of diversity in Alzheimer’s disease therapeutic trials: An CTAD task force report
.
The Journal of Prevention of Alzheimer’s Disease
,
9
(
3
),
388
392
. https://doi.org/10.14283/jpad.2022.50
Raman
,
R.
,
Quiroz
,
Y. T.
,
Langford
,
O.
,
Choi
,
J.
,
Ritchie
,
M.
,
Baumgartner
,
M.
,
Rentz
,
D.
,
Aggarwal
,
N. T.
,
Aisen
,
P.
,
Sperling
,
R.
, &
Grill
,
J. D.
(
2021
).
Disparities by race and ethnicity among adults recruited for a preclinical Alzheimer disease trial
.
JAMA Network Open
,
4
(
7
),
e2114364
. https://doi.org/10.1001/jamanetworkopen.2021.14364
Robinson
,
C. G.
,
Lee
,
J.
,
Min
,
P. H.
,
Przybelski
,
S. A.
,
Josephs
,
K. A.
,
Jones
,
D. T.
,
Graff-Radford
,
J.
,
Boeve
,
B. F.
,
Knopman
,
D. S.
,
Jack
Jr
,
C.
R
.
,
Petersen
,
R. C.
,
Machulda
,
M. M.
,
Fields
,
J. A.
, &
Lowe
,
V. J.
(
2024
).
Significance of a positive tau PET scan with a negative amyloid PET scan
.
Alzheimer’s & Dementia
,
20
(
3
),
1923
1932
. https://doi.org/10.1002/alz.13608
Schöll
,
M.
,
Lockhart
,
S. N.
,
Schonhaut
,
D. R.
,
O’Neil
,
J. P.
,
Janabi
,
M.
,
Ossenkoppele
,
R.
,
Baker
,
S. L.
,
Vogel
,
J. W.
,
Faria
,
J.
,
Schwimmer
,
H. D.
,
Rabinovici
,
G. D.
, &
Jagust
,
W. J.
(
2016
).
PET Imaging of tau deposition in the aging human brain
.
Neuron
,
89
(
5
),
971
982
. https://doi.org/10.1016/j.neuron.2016.01.028
Schwarz
,
A. J.
,
Shcherbinin
,
S.
,
Slieker
,
L. J.
,
Risacher
,
S. L.
,
Charil
,
A.
,
Irizarry
,
M. C.
,
Fleisher
,
A. S.
,
Southekal
,
S.
,
Joshi
,
A. D.
,
Devous
,
M. D.
,
Miller
,
B. B.
, &
Saykin
,
A. J.
(
2018
).
Topographic staging of tau positron emission tomography images
.
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
,
10
,
221
231
. https://doi.org/10.1016/j.dadm.2018.01.006
Spina
,
S.
,
La
Joie
, R.,
Petersen
,
C.
,
Nolan
,
A. L.
,
Cuevas
,
D.
,
Cosme
,
C.
,
Hepker
,
M.
,
Hwang
,
J.-H.
,
Miller
,
Z. A.
,
Huang
,
E. J.
,
Karydas
,
A. M.
,
Grant
,
H.
,
Boxer
,
A. L.
,
Gorno-Tempini
,
M. L.
,
Rosen
,
H. J.
,
Kramer
,
J. H.
,
Miller
,
B. L.
,
Seeley
,
W. W.
,
Rabinovici
,
G. D.
, &
Grinberg
,
L. T.
(
2021
).
Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease
.
Brain
,
144
(
7
),
2186
2198
. https://doi.org/10.1093/brain/awab099
Villemagne
,
V. L.
,
Leuzy
,
A.
,
Bohorquez
,
S. S.
,
Bullich
,
S.
,
Shimada
,
H.
,
Rowe
,
C. C.
,
Bourgeat
,
P.
,
Lopresti
,
B.
,
Huang
,
K.
,
Krishnadas
,
N.
,
Fripp
,
J.
,
Takado
,
Y.
,
Gogola
,
A.
,
Minhas
,
D.
,
Weimer
,
R.
,
Higuchi
,
M.
,
Stephens
,
A.
,
Hansson
,
O.
, &
Doré
,
V.
(
2023
).
CenTauR: Toward a universal scale and masks for standardizing tau imaging studies
.
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
,
15
(
3
),
e12454
. https://doi.org/10.1002/dad2.12454
Villemagne
,
V. L.
,
Lopresti
,
B. J.
,
Doré
,
V.
,
Tudorascu
,
D.
,
Ikonomovic
,
M. D.
,
Burnham
,
S.
,
Minhas
,
D.
,
Pascoal
,
T. A.
,
Mason
,
N. S.
,
Snitz
,
B.
,
Aizenstein
,
H.
,
Mathis
,
C. A.
,
Lopez
,
O.
,
Rowe
,
C. C.
,
Klunk
,
W. E.
, &
Cohen
,
A. D.
(
2021
).
What is T+? A Gordian knot of tracers, thresholds, and topographies
.
Journal of Nuclear Medicine
,
62
(
5
),
614
619
. https://doi.org/10.2967/jnumed.120.245423
Wang
,
L.
,
Benzinger
,
T. L.
,
Su
,
Y.
,
Christensen
,
J.
,
Friedrichsen
,
K.
,
Aldea
,
P.
,
McConathy
,
J.
,
Cairns
,
N. J.
,
Fagan
,
A. M.
,
Morris
,
J. C.
, &
Ances
,
B. M.
(
2016
).
Evaluation of tau Imaging in staging Alzheimer disease and revealing interactions between β-amyloid and tauopathy
.
JAMA Neurology
,
73
(
9
),
1070
1077
. https://doi.org/10.1001/jamaneurol.2016.2078
Weigand
,
A. J.
,
Maass
,
A.
,
Eglit
,
G. L.
, &
Bondi
,
M. W.
(
2022
).
What’s the cut-point?: A systematic investigation of tau PET thresholding methods
.
Alzheimer’s Research & Therapy
,
14
(
1
),
49
. https://doi.org/10.1186/s13195-022-00986-w
Wilkins
,
C. H.
,
Windon
,
C. C.
,
Dilworth-Anderson
,
P.
,
Romanoff
,
J.
,
Gatsonis
,
C.
,
Hanna
,
L.
,
Apgar
,
C.
,
Gareen
,
I. F.
,
Hill
,
C. V.
,
Hillner
,
B. E.
,
March
,
A.
,
Siegel
,
B. A.
,
Whitmer
,
R. A.
,
Carrillo
,
M. C.
, &
Rabinovici
,
G. D.
(
2022
).
Racial and ethnic differences in amyloid PET positivity in individuals with mild cognitive impairment or dementia: A secondary analysis of the imaging dementia-evidence for amyloid scanning (IDEAS) cohort study
.
JAMA Neurology
,
79
(
11
),
1139
1147
. https://doi.org/10.1001/jamaneurol.2022.3157
Wong
,
D. F.
,
Comley
,
R. A.
,
Kuwabara
,
H.
,
Rosenberg
,
P. B.
,
Resnick
,
S. M.
,
Ostrowitzki
,
S.
,
Vozzi
,
C.
,
Boess
,
F.
,
Oh
,
E.
,
Lyketsos
,
C. G.
,
Honer
,
M.
,
Gobbi
,
L.
,
Klein
,
G.
,
George
,
N.
,
Gapasin
,
L.
,
Kitzmiller
,
K.
,
Roberts
,
J.
,
Sevigny
,
J.
,
Nandi
,
A.
, …
Borroni
,
E.
(
2018
).
Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in Alzheimer subjects
.
Journal of Nuclear Medicine
,
59
(
12
),
1869
1876
. https://doi.org/10.2967/jnumed.118.209916
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.

Supplementary data