The superficial white matter, the layer of white matter immediately deep to the cortical grey matter, is a highly complex, heterogeneous tissue region comprising dense meshes of neural fibres, a robust population of interstitial neurons, and ongoing glial activity and myelination. It originates from the histologically distinct, developmentally vital subplate in the foetal brain, maintains thalamo-cortical connections throughout adult life, and is a necessary passage for all axons passing between the grey and white matter. Despite these features, the superficial white matter is among the most poorly understood regions of the brain, in part due to its complex makeup and the resulting difficulty of its study. In this review, we present our current knowledge of superficial white matter (SWM) anatomy, development, and response to disease. We discuss the unique challenges encountered in the neuroimaging of this region, including the lack of standard definition and the non-specificity of neuroimaging markers amplified by the complexity of the tissue. We discuss recent innovations and offer potential pathways forward.

The superficial white matter (SWM) refers to the layer of white matter immediately deep to the cortical grey matter. Compared with the relative structural simplicity of the further underlying deep white matter (DWM), the SWM is a complex integration of axonal fascicles, subcortical neurons, glial cells, and vasculature. A dense mesh of axons occupies the layer, amalgamating short, locally connecting fibres with the terminations of long fascicles projecting from across the cortex (Fig. 1A). These features arise from the developmental origins of the SWM and its adjacency to the grey matter and distinguish it from the DWM across the lifespan in health and disease.

Fig. 1.

Schematic illustrating basic features of the superficial white matter (SWM). (A) A dense mesh of fibres runs both tangentially along the grey matter–white matter interface and radially into the grey matter (GM) (Cottaar et al., 2018; Reveley et al., 2015; K. Schilling et al., 2018). (B) White matter (WM) interstitial neurons are represented in green. Cell density decreases deeper in the WM (Sedmak & Judaš, 2021). SWM supplied by both subcortical and medullary arteries. Cortex is supplied only by cortical arteries; deep WM (DWM) is supplied only by medullary arteries (Smirnov et al., 2021). Both SWM and cortex are drained by pial veins. DWM is drained by medullary veins (San Millán Ruíz et al., 2009). (C) A band of increased iron signal runs along the SWM. This colocalizes with a linear reduction in myelin signal stretching from the DWM to the SWM (Kirilina et al., 2020; Lee et al., 2023).

Fig. 1.

Schematic illustrating basic features of the superficial white matter (SWM). (A) A dense mesh of fibres runs both tangentially along the grey matter–white matter interface and radially into the grey matter (GM) (Cottaar et al., 2018; Reveley et al., 2015; K. Schilling et al., 2018). (B) White matter (WM) interstitial neurons are represented in green. Cell density decreases deeper in the WM (Sedmak & Judaš, 2021). SWM supplied by both subcortical and medullary arteries. Cortex is supplied only by cortical arteries; deep WM (DWM) is supplied only by medullary arteries (Smirnov et al., 2021). Both SWM and cortex are drained by pial veins. DWM is drained by medullary veins (San Millán Ruíz et al., 2009). (C) A band of increased iron signal runs along the SWM. This colocalizes with a linear reduction in myelin signal stretching from the DWM to the SWM (Kirilina et al., 2020; Lee et al., 2023).

Close modal

In the last two decades, the SWM has received focused attention from neuroimaging studies, quantifying the effects of development and disease on myelin, iron, cytoarchitecture, and microstructural complexity as interpreted with diffusion magnetic resonance imaging (dMRI). Considerable effort has also been dedicated to mapping the complex cortical connectivity mediated by the short association fibres (SAFs) endemic to the layer. However, the same tissue complexity driving this considerable research interest in the SWM also stymies the interpretation of traditional neuroimaging analyses, necessitating a careful, informed approach to experimental planning and interpretation.

In this review, we will outline the microstructural factors distinguishing the SWM from the DWM. With this context, we will summarize the currently recognized short and medium range cortical connections delineated by dissection and neuroimaging and synthesize recent investigations of myelin, iron, and diffusivity across early development, ageing, and disease, drawing on both neuroimaging and histological explorations. Special focus will be paid to interpretive limitations when neuroimaging the SWM. Above all, we illustrate and emphasize the importance of taking a multimodal approach, complementing imaging with ground-truth pathological and histological data, and we highlight exemplary studies embracing these designs.

This work was conducted as a narrative review within a scoping framework (Munn et al., 2018) to identify and analyze the key gaps in neuroimaging research on SWM. Studies were obtained via searches on PubMed via terms including “superficial white matter”, “SWM”, “U-fibers”, “short association fibres”, “SAF”, “tractography”, “Klingler’s dissection”, “schizophrenia”, “Alzheimer’s Disease”, “histology”, “development”, and “aging”. Other miscellaneous terms were used for more focused searches as needed for particular sections. Papers were also included based on citations, both works cited by and works citing seminal sources. The search was performed by the first author (P.V.D.), with the included literature individually appraised by the last author (L.P.). We anticipate this review influencing primary research studies on white matter as well as future systematic searches focused on more specific questions and results from specific populations.

2.1 Development

The SWM arises from the remnants of the foetal subplate, the developmental layer immediately deep to the precursor of the grey matter, the cortical plate (Judaš, Sedmak, & Pletikos, 2010). In humans, the subplate forms in the 12th–13th week of gestation, emerging from the deep aspect of the cortical plate. Neurons settled in this region following their migration from the ventricular zone are displaced by incoming axonal growth and spread deep into the brain across the subplate (Duque et al., 2016). The subplate continues to grow and expand throughout the second trimester, reaching its maximal size of 4 times the cortical plate width at 20 weeks. Throughout gestation, the subplate hosts a complex ecosystem of axonal outgrowth, synaptogenesis, migrating neurons, and developing glia, the details of which have been extensively reviewed by Kostović et al. (2019). New neurons continue to migrate through the subplate on their journey from the ventricular zone to the cortical plate. Thalamocortical fibres (Burkhalter et al., 1993), then callosal fibres, then corticocortical fibres progressively traverse the subplate and form transient synaptic connections, the beginnings of cortical connectivity. These synapses are replaced with cortical plate synapses beyond the 24th week of gestation. The earliest evidence of myelination is observed at 28 weeks gestation (Counsell et al., 2002), beginning a process that will continue into adolescence. At around 32 weeks of gestation (Kostović & Rakic, 1990; Kostović et al., 2019), cortical layer VI begins to form and the subplate starts to dissolve, giving way to the centrum semiovale and the SAFs of the SWM (Kostović & Rakic, 1980). Dissolution proceeds outward toward the cortex. SAFs, accordingly, grow from the bottom of sulcal fundi toward gyral crowns (Kostović et al., 2014). The entire process continues until well after birth, and regions with a thicker mid-gestation subplate, such as the frontal lobe, take the longest to mature. For instance, the subplate disappears from the pre- and post-central gyri and occipital lobe by 13 post-natal months, but is still present in the pre-frontal cortex (PFC), likely for a few more months (Kostović et al., 2014). Remaining cells in the subplate become white matter interstitial neurons (WMINs) (Chun & Shatz, 1989; Kostović & Rakic, 1980) surrounded by the axons of the SWM (Kostović et al., 2014).

2.2 Cellular composition

2.2.1 Neurons

The healthy, mature SWM hosts a rich ecosystem of WMINs, which consistently occupy healthy cortical architecture across the lifespan (Fig. 1B) (Sedmak & Judaš, 2021; Suarez-Sola et al., 2009). With an average density of 1200 neurons per mm3 (Sedmak & Judaš, 2019), they comprise an estimated 3% of all neurons in the cortex (Sedmak & Judaš, 2021). WMIN density is highest at the grey matter–white matter interface (GMWMI), decreasing with cortical depth, with studies reporting four (García-Marín et al., 2010) to five (Mortazavi et al., 2017) times the number of cells in the SWM than the DWM. Density within the SWM is roughly twice as high at the gyral crowns than at the sulcal depths, as determined both in rhesus monkeys (Mortazavi et al., 2017) and chimpanzees (Swiegers et al., 2021). Regional variations also occur. A study of rhesus monkeys found higher WMIN density in the parietal and temporal lobes than in the medial superior frontal gyrus (SFG) and central sulcus (Mortazavi et al., 2017). This regional distribution has generally been confirmed in humans, although some discrepancy remains between studies. The dorsolateral PFC and orbital pole have been shown to have high WMIN density, while occipital lobe/visual areas and the cingulate gyrus have been alternately shown to have relatively high and low densities (García-Marín et al., 2010; Sedmak & Judaš, 2019). Differences in these estimates likely relate to differing methods of segmenting the SWM, as discussed in detail by Sedmak and Judaš (2019).

Once established, WMIN populations remain stable (García-Marín et al., 2010), with only limited evidence suggesting a decline of density in the PFC in human ageing (Meencke, 1983). Observations from rhesus monkeys found no evidence of a change in cell density across the lifespan but did observe a reduction in soma size in all regions except the temporal lobe (Mortazavi et al., 2016).

WMINs have a functional and morphological diversity similar to that observed in the grey matter. Like grey matter neurons, they are immunoreactive to NeuN (Meyer et al., 1992; Sarnat et al., 2018; Sedmak & Judaš, 2019) and can be summarily divided into excitatory, glutamatergic, pyramidal neurons, and inhibitory, GABAergic interneurons. The pyramidal neurons are morphologically indistinguishable from those in layer VI of the cortex (Meyer et al., 1992) and include unipolar, bipolar, and multipolar cells, depending on the region (Zouridakis et al., 2023). GABAergic neurons have been found expressing a wide variety of markers, including calcium-binding proteins such as calretinin and parvalbumin; cholinoceptive markers such as the M2-muscarinic receptor and acetylcholinesterase (Smiley et al., 1998; Zouridakis et al., 2023); and nitric oxide synthase, identified via nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd). Together these markers reflect a wide heterogeneity of cell types, including cholinoceptive neurons, calbindin-positive neurons, and nitrinergic neurons, all distinct populations (Zouridakis et al., 2023). Interestingly, up to 80% of all NADPHd-positive neurons in the cortex are WMINs (Fischer & Kuljis, 1994; Judaš, Sedmak, Pletikos, & Jovanov-Milošević, 2010; Kowall & Beal, 1988; Norris et al., 1996). Most of these nitrinergic neurons are cholinoceptive, suggesting they may be a relay for cholinergic regulation of nitric oxide (Smiley et al., 1998). Axonal contact between them and blood vessels has been observed (Zouridakis et al., 2023), and given nitric oxide is a potent vasodilator, they may be important modulators of cerebral blood flow (Suarez-Sola et al., 2009).

However, the actual functions of WMINs are largely unstudied and speculative. In addition to their interactions with blood vessels, they form extensive interactions with both the cortex and thalamus (Clancy et al., 2001; Fischer & Kuljis, 1994; García-Marín et al., 2010; Sarnat et al., 2018; Valverde & Facal-Valverde, 1988) and fully participate in cortical networks (Torres-Reveron & Friedlander, 2007). They may thus regulate the flow of information across the SWM, given their position at the juncture of the DWM and grey matter (Sedmak & Judaš, 2021), a hypothesis originally argued by Colombo (2018).

2.2.2 Glia

Unlike WMINs, which are a peculiar feature of the SWM, very little work has investigated the properties of glial cells specific to the SWM. Nevertheless, some basic characteristics can be noted. Fibrous astrocytes populate the SWM just as in the rest of the white matter (Oberheim et al., 2009), but protoplasmic astrocytes, which are typically observed in the grey matter with extensive synaptic contacts (Zisis et al., 2021), have not been observed, despite the presence of WMINs (Oberheim et al., 2009). Beyond these basic glial types, varicose projection astrocytes, a subtype specific to humans and great apes, have been observed both in the lowest layers of the grey matter (V-VI) and in the SWM (Falcone et al., 2022). Finally, Miller and Raff’s original work delineating fibrous and protoplasmic astrocytes described an intermediary phenotype at the edge of the optic nerve, suggesting such “boundary” astrocytes may play both grey matter- and white matter-related roles (Butt et al., 2014; Miller & Raff, 1984).

Oligodendrocytes regulate the myelination of neurons. They have a particularly high density in the SWM—more so than the overlying grey matter (Z. He et al., 2017)—corresponding with the relatively late myelination of the layer’s dense axonal tracts (see Section 4.1.3). Iron, a key factor for myelination, colocalizes with these oligodendrocytes, resulting in an intense band of iron-specific signal viewable on imaging (Kirilina et al., 2020) (Fig. 1C). It is not known whether SWM oligodendrocytes more closely resemble those of the grey matter, which have small cell bodies, support numerous axonal interactions with fewer myelin layers, and mature relatively late, or those of the DWM, which have larger cell bodies, and support fewer axonal interactions with more layers (Butt & Berry, 2000; Haroutunian et al., 2014; Osanai et al., 2022). The high axonal density suggests the former, but this must be confirmed by region-specific evaluation. Nevertheless, the high oligodendrocyte density suggests a unique dependency within the SWM and, possibly, a corresponding vulnerability to myelin-related disorders.

Finally, microglia are the resident immune cells within the otherwise immunoprotected cortical parenchyma. Microglial cell counts are higher throughout the white matter than the grey matter (Mittelbronn et al., 2001), and this appears to hold true in the SWM (Taipa et al., 2017). Microglia are known to play a role in myelination (Borst et al., 2021), but this interaction has not been particularly studied in SWM.

2.3 Vascular organization

The SWM can be further distinguished by its vascular supply (Fig. 1B). Endoparenchymal arteries supplying the cortex and white matter arise from the pial vascular network and extend toward the ventricles. These can be classified according to their length: cortical arteries are restricted to the cortex, subcortical arteries extend into the SWM, and medullary arteries travel into the DWM as far as the lateral ventricles. The cortex and DWM are both supplied solely by their corresponding artery class. The SWM, in contrast, receives supply both from subcortical arteries and the proximal branches of the medullary arteries. This dual supply makes the SWM more resilient to blood flow-related pathology, such as lacunar infarcts and small vessel disease (Riley et al., 2018; Smirnov et al., 2021).

Venous drainage of the SWM occurs via the superficial venous system, which combines with the cortical circulation and collects into the pial veins. The DWM drains via the deep medullary veins, which collect at the ventricles into the subependymal veins (San Millán Ruíz et al., 2009).

This separated circulation between the two white matter layers corresponds with markedly different activity patterns as assessed by functional magnetic resonance imaging (fMRI). The blood oxygen level dependent (BOLD) signal (which represents a local increase in blood flow in response to increased neural activity) observed in the DWM is qualitatively different than that of the grey matter. Geometrically, its peak is shorter, narrower, and has a smaller integral area; the undershoot following the peak is shorter; and the peak is preceded by a dip. Deeper dips are associated with narrower, more delayed peaks (K. G. Schilling, Li, et al., 2022). Furthermore, the timing of the DWM BOLD response is delayed relative to the grey matter by as much as twofold (M. Li et al., 2019). Functional correlations between grey matter and DWM are maximized with a 4–6 second delay incorporated into the DWM signal (M. Li et al., 2020). However, none of these features manifest in the SWM. Profiling the BOLD response along various white matter tracts, segments nearest to the cortex consistently show a response more similar to that seen in the grey matter (K. G. Schilling, Li, et al., 2022). Task-linked and internal functional connectivity is not delayed but synchronized with the grey matter (M. Li et al., 2019, 2020). These differences are reflected in experiments clustering the white matter based on functional activity, which consistently split the region into deep, middle, and superficial clusters (Jiang, Luo, et al., 2019; Jiang, Song, et al., 2019; J. Li et al., 2022; Peer et al., 2017).

These observations suggest that functional activity in the SWM may be statistically dependent on the functional activity of the overlying grey matter. In the data from Peer et al. (2017), many of the superficial clusters are strongly correlated with immediately adjacent, independently clustered grey matter regions, although they did not explicitly test this association. On the other hand, such an observation was not evident in more recent work from P. Wang et al. (2022), but again, the association was not explicitly tested. Nevertheless, statistical linkage between adjacent grey matter and white matter can be predicted both from their common circulatory drainage (Huck et al., 2023) and from the functional linkage expected between a grey matter region and the axons directly connected to it. The BOLD signal is broadly homogeneous along individual white matter fascicles (Ding et al., 2013, 2016; Mezer et al., 2009; Peer et al., 2017), and fascicular functional activity is related to task-based neurological activation (M. Li et al., 2019). Therefore, one might reasonably expect strong correlations between SWM fibres and their connected regions. Finally, the putative role of WMINs in the regulation of the haemodynamic response, described above, also predicts a functional linkage between grey matter and adjacent SWM. As an important caveat, however, the proximity of the SWM to the grey matter increases its susceptibility to partial volume effects. These correlations might thus be more explainable by imprecise sampling than true physiological linkage.

3.1 Overview

Perhaps the most salient feature of the SWM is the dense mesh of axons running transverse to the GMWMI and radially penetrating the grey matter (Fig. 1A) (K. Schilling et al., 2018). While cortical axons of all lengths must pass through the SWM, the transverse component of the mesh largely comprises medium association fibres (MAFs) and SAFs. MAFs include the frontal aslant tract (FAT), vertical occipital fasciculus, sledge runner, and temporo-parietal connection; they are usually intra-lobar but may connect adjacent lobes. SAFs, typically less than 40 mm long, connect immediately adjacent gyri (inter-gyral), or the gyral walls within a single gyrus (intra-gyral). They are nearly ubiquitous, meaning any two adjacent gyri selected will have white matter tracts connecting them (Monroy-Sosa et al., 2020; Shinohara et al., 2020). Their density, however, varies significantly across the brain, allowing the delineation of robust, reproducible SAF bundles. Such bundles are often called “U-fibres”, due to their tight, concave curve. MAFs and explicitly delineated SAFs are tabulated in Table 1.

Table 1.

Medium association fascicles and short association fascicles in the human brain.

TractCourseTractography studiesDissection studies
Frontal Aslant Tract (FAT) Anterior supplementary and pre-supplementary motor of superior frontal gyrus to pars triangularis, pars opercularis, ventral aspect of pre-central gyrus (Bozkurt et al., 2017;
Catani et al., 2012;
Catena Baudo et al., 2023;
Pascual-Diaz et al., 2020;
Rojkova et al., 2016;
Varriano et al., 2020
(Bozkurt et al., 2016, 2017;
Catani et al., 2012;
Catena Baudo et al., 2023;
Monroy-Sosa et al., 2020;
Pascual-Diaz et al., 2020;
Vergani, Lacerda, et al., 2014
Fronto-orbito-polar Posterior orbital gyrus to anterior orbital gyrus and ventromedial orbital pole (Catani et al., 2012;
Rojkova et al., 2016
(Catani et al., 2012
Fronto-marginal Medial to lateral regions of fronto-polar cortex, beneath fronto-marginal sulcus (Catani et al., 2012;
Rojkova et al., 2016
(Catani et al., 2012
Hand knob tracts Pre- to post-central gyrus in the hand knob region of central sulcus (Catani et al., 2012;
Pron et al., 2021;
Rojkova et al., 2016;
Simone et al., 2021
(Catani et al., 2012;
Vergani, Lacerda, et al., 2014
Face tracts Pre- to post-central gyrus in the ventral aspect of central sulcus (Catani et al., 2012;
Pron et al., 2021;
Rojkova et al., 2016
 
Paracentral tracts Pre- to post-central gyrus in the dorsal aspect of central sulcus (Catani et al., 2012;
Pron et al., 2021;
Rojkova et al., 2016
 
Fronto-insular tracts (FIT) Inferior frontal gyrus and pre-central gyrus, around the peri-insular sulcus, to the insula (Catani et al., 2012;
Rojkova et al., 2016
(Catani et al., 2012
Frontal Longitudinal System (FLS) Superior Pre-central gyrus to ventral part of superior frontal gyrus and dorsal part of middle frontal gyrus (Bozkurt et al., 2017;
Catani et al., 2012;
Rojkova et al., 2016
(Bozkurt et al., 2016, 2017;
Briggs et al., 2021;
Catani et al., 2012;
Maldonado et al., 2012;
Vergani, Lacerda, et al., 2014
FLS Inferior Pre-central gyrus to ventral part of middle frontal gyrus and dorsal part of inferior frontal gyrus (Catani et al., 2012;
Rojkova et al., 2016
(Briggs et al., 2019, 2021;
Catani et al., 2012
Suppl. Motor Area-Cingulate Gryus Supplementary motor area to cingulate gyrus  (Vergani, Lacerda, et al., 2014
Precuneus—Cuneus Precuneus to cuneus  (Vergani, Mahmood, et al., 2014
Stratum Calcarinum Upper to lower banks of calcarine fissure (Bugain et al., 2021(Vergani, Mahmood, et al., 2014
Medial Occipital Longitudinal Tract (MOLT) (sledge runner) Inferior aspect of cuneus to superior/anterior aspect of lingual gyrus, further extending to the posterior parahippocampal gyrus (Beyh et al., 2022;
Bugain et al., 2021;
Koutsarnakis et al., 2019
(Baydin et al., 2017;
Koutsarnakis et al., 2019;
Vergani, Mahmood, et al., 2014
Stratum Proprium Cunei Superior to inferior aspect of cuneus (Bugain et al., 2021(Vergani, Mahmood, et al., 2014
Stratum Verticale Convexitatis Between occipital gyri under the superior, middle, and inferior occipital sulci  (Vergani, Mahmood, et al., 2014
Stratum Profundum Convexitatis Superior to inferior aspect of occipital lobe  (Vergani, Mahmood, et al., 2014
Stratum Sagittale Occipital to temporal lobes, wrapping around the occipital ventricular lobe  (Vergani, Mahmood, et al., 2014
Vertical Occipital Fasciculus (VOF) Occipito-temporal sulcus, ascending to lateral superior occipital lobe and posterior angular gyrus (Bugain et al., 2021;
Bullock et al., 2019;
Jitsuishi et al., 2020;
Palejwala et al., 2020;
Petit et al., 2023;
Takemura et al., 2016, 2017;
Y. Wu et al., 2016;
Yeatman et al., 2013, 2014
(Jitsuishi et al., 2020;
Palejwala et al., 2020;
Petit et al., 2023;
Y. Wu et al., 2016
Transverse Fasciculus of the lingual lobule of Vialet Inferior gyri of calcarine fissure to infero-lateral aspects of occipital lobe (Bugain et al., 2021 
Temporo-Parietal Connection Inferior and middle temporal gyri, fuisiform gyrus, inferior occipital lobe to superior parietal lobe (Bullock et al., 2019;
Y. Wu et al., 2016
 
Parietal Inferior-to-Superior tract (PIST) Superior parietal lobule to supramarginal and angular gyri (Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
(Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
Parietal Inferior-to-Post-central (PIP) Suppramarginal and angulary gyri to post-central gyrus (Catani et al., 2017;
Petit et al., 2023
(Catani et al., 2017;
Petit et al., 2023
Parietal Superior-to-Post-central (PSP) Superior parietal lobule to post-central gyrus (Catani et al., 2017(Catani et al., 2017;
Maldonado et al., 2012
Parietal Angular-to-Supramarginal (PAS) Angular gyrus to supra-marginal gyrus (Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
(Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
Parietal Intra-gyral (PIG) of the Supramarginal gyrus Intra-gyral U-fibres within supra-marginal gyrus (Catani et al., 2017(Catani et al., 2017
PIG of the Precuneus Intra-gyral U-fibres within precuneus gyrus (Catani et al., 2017;
Tanglay et al., 2022
(Catani et al., 2017;
Tanglay et al., 2022
PIG of the Superior Parietal Lobe (SPL) Intra-gyral U-fibres within superior parietal lobule (Catani et al., 2017(Catani et al., 2017
Precuneus-SPL Precuneus to superior parietal lobule (Tanglay et al., 2022(Maldonado et al., 2012;
Tanglay et al., 2022
Intra-gyral Insular Cortex Intra-gyral U-fibres within the insula (Nachtergaele et al., 2019(Nachtergaele et al., 2019
Insular Cortex—Medial Temporal Lobe Insula to medial temporal lobe (Nachtergaele et al., 2019(Nachtergaele et al., 2019
Angular Gyrus (AG) —Precuneus Angular gyrus to precuneus (Petit et al., 2023(Petit et al., 2023
AG—Occipital Lobe (all gyri) Angular gyrus to the superior, middle, and inferior occipital gyri (Petit et al., 2023(Petit et al., 2023
AG—Temporal Lobe (superior and middle) Angular gyrus to superior and middle temporal gyri (Petit et al., 2023(Petit et al., 2023
AG—Pre-central Gyrus Angular gyrus to pre-central gyrus (Petit et al., 2023(Petit et al., 2023
Lingual Gyrus—Fusiform Gyrus Lingual gyrus to fusiform gyrus (Palejwala et al., 2020(Palejwala et al., 2020
Fusiform Gyrus—Inferior Occipital Gyrus Fusiform gyrus to inferior occipital gyrus (Palejwala et al., 2020(Palejwala et al., 2020
TractCourseTractography studiesDissection studies
Frontal Aslant Tract (FAT) Anterior supplementary and pre-supplementary motor of superior frontal gyrus to pars triangularis, pars opercularis, ventral aspect of pre-central gyrus (Bozkurt et al., 2017;
Catani et al., 2012;
Catena Baudo et al., 2023;
Pascual-Diaz et al., 2020;
Rojkova et al., 2016;
Varriano et al., 2020
(Bozkurt et al., 2016, 2017;
Catani et al., 2012;
Catena Baudo et al., 2023;
Monroy-Sosa et al., 2020;
Pascual-Diaz et al., 2020;
Vergani, Lacerda, et al., 2014
Fronto-orbito-polar Posterior orbital gyrus to anterior orbital gyrus and ventromedial orbital pole (Catani et al., 2012;
Rojkova et al., 2016
(Catani et al., 2012
Fronto-marginal Medial to lateral regions of fronto-polar cortex, beneath fronto-marginal sulcus (Catani et al., 2012;
Rojkova et al., 2016
(Catani et al., 2012
Hand knob tracts Pre- to post-central gyrus in the hand knob region of central sulcus (Catani et al., 2012;
Pron et al., 2021;
Rojkova et al., 2016;
Simone et al., 2021
(Catani et al., 2012;
Vergani, Lacerda, et al., 2014
Face tracts Pre- to post-central gyrus in the ventral aspect of central sulcus (Catani et al., 2012;
Pron et al., 2021;
Rojkova et al., 2016
 
Paracentral tracts Pre- to post-central gyrus in the dorsal aspect of central sulcus (Catani et al., 2012;
Pron et al., 2021;
Rojkova et al., 2016
 
Fronto-insular tracts (FIT) Inferior frontal gyrus and pre-central gyrus, around the peri-insular sulcus, to the insula (Catani et al., 2012;
Rojkova et al., 2016
(Catani et al., 2012
Frontal Longitudinal System (FLS) Superior Pre-central gyrus to ventral part of superior frontal gyrus and dorsal part of middle frontal gyrus (Bozkurt et al., 2017;
Catani et al., 2012;
Rojkova et al., 2016
(Bozkurt et al., 2016, 2017;
Briggs et al., 2021;
Catani et al., 2012;
Maldonado et al., 2012;
Vergani, Lacerda, et al., 2014
FLS Inferior Pre-central gyrus to ventral part of middle frontal gyrus and dorsal part of inferior frontal gyrus (Catani et al., 2012;
Rojkova et al., 2016
(Briggs et al., 2019, 2021;
Catani et al., 2012
Suppl. Motor Area-Cingulate Gryus Supplementary motor area to cingulate gyrus  (Vergani, Lacerda, et al., 2014
Precuneus—Cuneus Precuneus to cuneus  (Vergani, Mahmood, et al., 2014
Stratum Calcarinum Upper to lower banks of calcarine fissure (Bugain et al., 2021(Vergani, Mahmood, et al., 2014
Medial Occipital Longitudinal Tract (MOLT) (sledge runner) Inferior aspect of cuneus to superior/anterior aspect of lingual gyrus, further extending to the posterior parahippocampal gyrus (Beyh et al., 2022;
Bugain et al., 2021;
Koutsarnakis et al., 2019
(Baydin et al., 2017;
Koutsarnakis et al., 2019;
Vergani, Mahmood, et al., 2014
Stratum Proprium Cunei Superior to inferior aspect of cuneus (Bugain et al., 2021(Vergani, Mahmood, et al., 2014
Stratum Verticale Convexitatis Between occipital gyri under the superior, middle, and inferior occipital sulci  (Vergani, Mahmood, et al., 2014
Stratum Profundum Convexitatis Superior to inferior aspect of occipital lobe  (Vergani, Mahmood, et al., 2014
Stratum Sagittale Occipital to temporal lobes, wrapping around the occipital ventricular lobe  (Vergani, Mahmood, et al., 2014
Vertical Occipital Fasciculus (VOF) Occipito-temporal sulcus, ascending to lateral superior occipital lobe and posterior angular gyrus (Bugain et al., 2021;
Bullock et al., 2019;
Jitsuishi et al., 2020;
Palejwala et al., 2020;
Petit et al., 2023;
Takemura et al., 2016, 2017;
Y. Wu et al., 2016;
Yeatman et al., 2013, 2014
(Jitsuishi et al., 2020;
Palejwala et al., 2020;
Petit et al., 2023;
Y. Wu et al., 2016
Transverse Fasciculus of the lingual lobule of Vialet Inferior gyri of calcarine fissure to infero-lateral aspects of occipital lobe (Bugain et al., 2021 
Temporo-Parietal Connection Inferior and middle temporal gyri, fuisiform gyrus, inferior occipital lobe to superior parietal lobe (Bullock et al., 2019;
Y. Wu et al., 2016
 
Parietal Inferior-to-Superior tract (PIST) Superior parietal lobule to supramarginal and angular gyri (Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
(Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
Parietal Inferior-to-Post-central (PIP) Suppramarginal and angulary gyri to post-central gyrus (Catani et al., 2017;
Petit et al., 2023
(Catani et al., 2017;
Petit et al., 2023
Parietal Superior-to-Post-central (PSP) Superior parietal lobule to post-central gyrus (Catani et al., 2017(Catani et al., 2017;
Maldonado et al., 2012
Parietal Angular-to-Supramarginal (PAS) Angular gyrus to supra-marginal gyrus (Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
(Burks et al., 2017;
Catani et al., 2017;
Petit et al., 2023
Parietal Intra-gyral (PIG) of the Supramarginal gyrus Intra-gyral U-fibres within supra-marginal gyrus (Catani et al., 2017(Catani et al., 2017
PIG of the Precuneus Intra-gyral U-fibres within precuneus gyrus (Catani et al., 2017;
Tanglay et al., 2022
(Catani et al., 2017;
Tanglay et al., 2022
PIG of the Superior Parietal Lobe (SPL) Intra-gyral U-fibres within superior parietal lobule (Catani et al., 2017(Catani et al., 2017
Precuneus-SPL Precuneus to superior parietal lobule (Tanglay et al., 2022(Maldonado et al., 2012;
Tanglay et al., 2022
Intra-gyral Insular Cortex Intra-gyral U-fibres within the insula (Nachtergaele et al., 2019(Nachtergaele et al., 2019
Insular Cortex—Medial Temporal Lobe Insula to medial temporal lobe (Nachtergaele et al., 2019(Nachtergaele et al., 2019
Angular Gyrus (AG) —Precuneus Angular gyrus to precuneus (Petit et al., 2023(Petit et al., 2023
AG—Occipital Lobe (all gyri) Angular gyrus to the superior, middle, and inferior occipital gyri (Petit et al., 2023(Petit et al., 2023
AG—Temporal Lobe (superior and middle) Angular gyrus to superior and middle temporal gyri (Petit et al., 2023(Petit et al., 2023
AG—Pre-central Gyrus Angular gyrus to pre-central gyrus (Petit et al., 2023(Petit et al., 2023
Lingual Gyrus—Fusiform Gyrus Lingual gyrus to fusiform gyrus (Palejwala et al., 2020(Palejwala et al., 2020
Fusiform Gyrus—Inferior Occipital Gyrus Fusiform gyrus to inferior occipital gyrus (Palejwala et al., 2020(Palejwala et al., 2020

Tract names are specified according to the nomenclature most used in the literature (leading to inconsistent naming schemes across the lobes). Tracts with no specific name are labelled according to their termination points. FLS = Frontal Longitudinal System; PIG = Parietal Intra-gyral; SPL = Superior Parietal Lobe; AG = Angular Gyrus.

3.2 Methods of studying short association fibres

Because of the difficulty executing tract-tracing and other invasive paradigms enjoyed in animal models (Jbabdi et al., 2015), two methods have been of practical utility for exploring long range connectivity in humans. Pathological dissection on post-mortem samples has been used for over a century (Klingler, 1935; Yeatman et al., 2014) in the classification of white matter fascicles. More recently, tractography via dMRI has taken its place as the primary tool of choice (Catani et al., 2012; Guevara et al., 2020; Jbabdi et al., 2015) (for primers on tractography, see Mukherjee et al. (2008) and Jbabdi & Johansen-Berg (2011)). Both methods have distinct advantages and disadvantages that must be considered when interpreting results.

The confirmation of tracts via Klingler’s dissection is perhaps the most reliable evidence of the existence, course, and termination points of white matter fascicles (Agrawal et al., 2011; Klingler & Gloor, 1960; Yendiki et al., 2022), making it a cornerstone of modern neuroanatomy (Jitsuishi et al., 2020; Shinohara et al., 2020; Silva & Andrade, 2016; Vergani, Mahmood, et al., 2014). Although time consuming and dependent on a great deal of technical skill and limited tissue samples (Dziedzic et al., 2021; Judaš et al., 2011; Wysiadecki et al., 2019), it provides specific characterizations of axonal morphology even with small sample sizes.

However, dissection can have difficulty disentangling regions with crossing (David et al., 2019) or intermingled fibres (Takemura et al., 2017). For instance, Maldonado et al. (2012) failed to identify a continuous superior longitudinal fasciculus, instead proposing a discontinuous series of U-fibres stretching from the SFG to the precuneus and collectively appearing as a single fibre bundle. This proposal has been disputed in other work (Janelle et al., 2022). A study by David et al. (2019) found tractographic evidence of a supero-anterior fasciculus stretching from the parietal lobe to the orbito-frontal cortex. Attempts to reproduce the bundle in dissection, however, were stymied by the abundance of crossing and overlapping fibre bundles. Finally, the vertical occipital fasciculus has evaded precise identification via dissection (Yeatman et al., 2014) until the last decade (Jitsuishi et al., 2020; Takemura et al., 2016; Yeatman et al., 2013). Thus, failure to find a tract in dissection cannot necessarily be taken as evidence that the tract does not exist, and even consistent identifications may oversimplify the actual anatomy of the individual neurons.

Dannhoff et al. (2024) recently pioneered a new, “inside-out” approach to the dissection of SAFs proceeding from the DWM up toward the cortex. This approach was able to precisely distinguish inter-gyral SAFs from the underlying DWM throughout the brain with greater ease than a traditional, cortex-first approach, and could prove an invaluable tool for future, fine-grained dissection of SAFs.

Unlike dissection, which is generally restricted to small sample sizes from elderly adults, tractography has extremely high throughput and is completely non-invasive, allowing application to healthy and diseased populations across the lifespan. This makes it excellent for exploratory and comparative analyses. However, it also suffers from low specificity (Thomas et al., 2014). Even modern imaging approaches and algorithms have been shown to identify non-existent white matter tracts (Maier-Hein et al., 2017). Thus, novel tracts identified by tractography experiment should be confirmed by dissection. The sensitivity of tractography can also be limited, depending on the methodology. Deterministic algorithms such as Fibre Assignment by Continuous Tracking (FACT), popular choices for exploratory studies due to their relatively high specificity, have inherently lower sensitivity than probabilistic alternatives (Thomas et al., 2014).

Tractography algorithms have particular difficulty resolving crossing fibre populations within a single voxel (J.-D. Tournier et al., 2011), a phenomenon present in as many as 90% of the voxels in a typical dMRI acquisition (Jeurissen et al., 2013; K. G. Schilling, Tax, et al., 2022). More sophisticated diffusion response models such as constrained spherical deconvolution (J. D. Tournier et al., 2007) or the ball-and-stick model (Behrens et al., 2007) perform better than tensor-based tractography, but do not fully eliminate the problem and require more complex acquisitions not available to many clinical studies. This challenge is especially germane to analysis of the SWM. Despite the complex mesh of fibres observed histologically, in dMRI, transverse fibres are by far the most prominent (Cottaar et al., 2018) across the entirety of the GMWMI except for the gyral crown (Fig. 1A). This prevents the accurate tracking of fibres along the GMWMI (Reveley et al., 2015) and leads to a gyral bias (K. Schilling et al., 2018).

In summary, dissection and tractography are complementary approaches, each necessary to map and catalogue the SAFs. Tractography is often used as an exploratory tool and, more recently, has been used to study inter-individual variability in SAFs. Dissection is necessary to validate novel tracts (Yendiki et al., 2022), and provides a more precise account of a tract’s course and termination points. Together, these tools have catalogued local cortical connectivity with great precision, albeit with persistent challenges, as described in the next section.

3.3 Association fibres in the SWM

To delineate a white matter tract, it must be extricated from the other tracts sharing its space. The experimenter must prove the tract in question is best defined as a unique unit rather than a mere branch of a larger fascicle. The difficulty of disentangling intermingled fibres using dissection (Vergani, Mahmood, et al., 2014) and the propensity for false positives in tractography studies has hindered the unequivocal identification of some tracts. For instance, the vertical occipital fasciculus, which connects the cuneus to the fusiform gyrus (Jitsuishi et al., 2020), has been a subject of discussion for more than a century, being variously affirmed or dismissed as a part of the inferior longitudinal fasciculus (for a history, see Yeatman et al. (2014)). Only recently has its existence reached consensus, based on its unique histological properties (Yeatman et al., 2014), consistent identification (Takemura et al., 2016; Y. Wu et al., 2016; Yeatman et al., 2014), and a nascent understanding of its role in visual processing (Abdolalizadeh et al., 2022).

Conversely, the full boundaries and extent of a tract are somewhat arbitrary, subject to the constraints of the describing method and the intent of the anatomist. The sledge runner tract, connecting the inferior aspect of the cuneus to the junction of the lingual gyrus and parahippocampal gyrus, was only discovered in the last decade (Vergani, Mahmood, et al., 2014), but has now been repeatedly described by both dissection and tractography experiments (Baydin et al., 2017; Bugain et al., 2021; Koutsarnakis et al., 2019). More recently, however, Beyh et al. (2022) have argued the tract should be considered a subunit of a larger tract called the medial occipital longitudinal tract, connecting both the cuneus and the posterior lingual gyrus to the parahippocampal gyrus, based on a functional understanding of visual processing. Indeed, the anatomy of occipital connections has been tightly linked to visual processing, lending weight to this argument (Movahedian Attar et al., 2020). However, the proposal awaits further consensus.

The FAT, which connects the supplementary motor area to the pars opercularis and pars triangularis (Bozkurt et al., 2017; Catani et al., 2012; Monroy-Sosa et al., 2020; Rojkova et al., 2016; Vergani, Lacerda, et al., 2014), has received prominent attention in the literature due to its important role in language (Catani et al., 2013) and its oblique course across the frontal lobe, which requires special attention in neurosurgery (Monroy-Sosa et al., 2020). As with the vertical occipital fasciculus, there have been recent moves to generalize the FAT as the extended FAT, connecting the entire SFG to the entire inferior frontal gyrus (Catena Baudo et al., 2023; Pascual-Diaz et al., 2020; Varriano et al., 2020). Again, the proposal is made based on functional arguments, specifically the role of the FAT in language (Catani et al., 2013; Catena Baudo et al., 2023).

The MAFs discussed above have received considerable focus. SAFs, on the other hand, have received less attention due to their ubiquity and uncertainty regarding their function. Of these tracts, the most robustly characterized are those connecting the pre-central gyrus to the post-central gyrus under the central sulcus. Although U-fibres line the entire sulcus, three major clusters can be distinguished. The paracentral tract lies in the foot portion of the homunculus; the superior, middle, and inferior hand tracts constitute the hand knob region; and face tracts, sometimes split into superior and inferior subtracts, occupy the ventral aspect of the pre- and post-central gyri in the face portion of the homunculus (Catani et al., 2012; Guevara et al., 2017; Magro et al., 2012; Pron et al., 2021; Rojkova et al., 2016; Román et al., 2017; Thompson et al., 2017; Vergani, Lacerda, et al., 2014). The hand knob region has the highest density of fibres (Magro et al., 2012), perhaps reflecting the higher dexterity of the hand compared with other parts of the homunculus. The explicit functional association with the hand, foot, and mouth portions of the homunculus has been confirmed by Pron et al. (2021), who found clusters of increased U-fibre connectivity specifically at cortical sites functionally associated by fMRI with sensorimotor activity in these regions. Additionally, the position of the left hemisphere hand knob was associated with the handedness of the participant. Finally, in patients with autism spectrum disorder (ASD), fractional anisotropy (FA) reductions specifically in the hand knob were linked with reduced dexterity scores (Thompson et al., 2017). Thus, these fibres appear to play a direct role in motor control.

Of the four major cortical lobes, the temporal lobe has received the least attention specific to the SWM. Tracts connecting the insular cortex to the medial aspect of the temporal lobe have been identified (Nachtergaele et al., 2019), and Catani (2022) has reviewed several white matter systems in the temporal lobe, including the temporal longitudinal fasciculus (Maffei et al., 2017), connecting posterior to anterior aspects of the superior temporal gyrus, middle temporal gyrus, and ITG; the fusilum (Epelbaum et al., 2008), connecting posterior to anterior aspects of the fusiform gyrus; and the temporal vertical tract, a system of U-fibres under the superior temporal sulcus (Catani, 2022). To our knowledge, these tracts have yet to be explicitly studied with tractography or dissection.

The ubiquity of SAFs challenges any discrete catalogue or classification, including our own summary in Table 1. Attempts to define bundles of white matter fibres, especially methodologies treating these bundles as isolated streamlines, will tend to ignore the sheet-like character of the SAFs. Some atlasing attempts deal with this by defining large, lobe-sized systems of SAFs, rather than bundles (F. Zhang et al., 2018). This, however, ignores the heterogeneous fibre density observed across the SWM. Some SAF loci, for instance, can be reconstructed in tractography more consistently than others (Pardo et al., 2013).

A recent dissection project by Shinohara et al. (2020) proposed an appealing paradigm to handle this tension. They likened the geometry of the gyral folds to the geography of a mountain range. After decortication, they identified gyral junctions (mountain peaks) connected by ridges, together forming a mesh. The spaces in the mesh were filled with classical U-fibres (valleys). Junctions were found at gyral intersections, including 3- and 4-way intersections and small, discontinuous branches. The ridges connecting them were formed by the ascending tracts of inter-gyral U-fibres but contained intra-gyral U-fibres connecting adjacent junctions. SAFs could thus be classified into U-fibres connecting junctions, either intra- or inter-gyral, or inter-gyral U-fibres connecting ridges.

This view of the SWM may provide a more robust, anatomically based organizational paradigm to map SAFs across individuals. Thus far, no other study has attempted to replicate or validate the schema or apply it to SAF atlasing. There is also no study on the functional relevance of their junctions and ridges. Junctions could thus be important epicentres of cortical activity, or inconsequential artefacts of cortical morphology.

SAF density has also been tightly linked to pli de passages, small gyri buried within anatomical sulci and thus normally hidden from external view (Mangin et al., 2019). Bodin et al. (2021) have reported the results of a tractography experiment investigating pli de passages in the superior temporal sulcus. They found a disproportionately high number of streamlines traversing through pli de passages, highlighting their apparent role as high-traffic conduits for white matter connectivity. Pron et al. (2021) also noted that the central white matter cluster of the hand knob travelled through a pli de passage in the central sulcus, and that the anatomical location of this central sulcus co-varied with the hand knob according to subject handedness. Thus, a more complete understanding of the cortical folding architecture may further aid the cataloguing of SAFs.

3.4 Recent innovations in SWM tractography

Several tractography-related approaches and techniques have been developed in recent years to address challenges specific to SWM tractography, including the impact of gyral bias, the efficient tracking of SAFs by the exclusion of long-range fibres, and the identification of correspondence between highly heterogeneous SAF architectures across subjects. We spend the rest of this section discussing these developments.

3.4.1 Reducing the effect of gyral bias

Surface Enhanced Tractography (St-Onge et al., 2018) attempts to diminish the effects of gyral bias by using an analytical prior, rather than the diffusion data, to propagate tracts within the gyral blades. The GMWMI is tightly eroded into a white matter cone within the blade, forming a virtual SWM–DWM interface within the confines of the gyri. Tractography within this interface is conducted as normal. Superficial to the interface, white matter tracts are assumed to evenly fan from the cone to the GMWMI. The two paradigms are merged to form a single tractography. Notably, the approach is agnostic to tractography algorithm, allowing its use as a “plugin” for experiments that may be sensitive to gyral bias. An example application comes from Cole et al. (2021), who employed it to ensure even streamline distribution across the GMWMI in a vertex-wise study of structural connectivity.

Active Cortex Tractography (Y. Wu et al., 2021) takes a different approach to limit gyral bias. The method uses a multi-tissue constrained spherical deconvolution approach like that used in MRtrix (Jeurissen et al., 2014; J.-D. Tournier et al., 2019). Unlike MRtrix, it uses asymmetric fibre orientation distributions (FODs), previously found by the same authors to reduce gyral bias (Y. Wu et al., 2018). It performs streamline tracking using a unique “scouting” approach. Rather than directly applying a streamline propagation algorithm, they defined each streamline step using the interpolation of the next two steps given by the algorithm. This allows streamlines to make tighter turns than the angle cutoff would normally allow, without adversely increasing sensitivity to noise. (In fact, it would in principle reduce noise in long, straight streamline regions, although this was not tested by the authors.) The approach qualitatively increased coverage across the cortical surface, however, to our knowledge its effect on gyral bias has not been extensively quantitatively tested, and it has not been applied to any connectivity study.

3.4.2 Optimizing the delineation of SAFs

Surface-based Tracking (Shastin et al., 2022) is an SAF-optimized tractography approach based on MRtrix probabilistic anatomically constrained tractography (ACT) (Smith et al., 2012). It uses vertices on the FreeSurfer-derived GMWMI mesh (Fischl et al., 1999) as tractography seeds, limits streamline length to 40 mm, and relaxes ACT constraints by allowing tracts to stream in and out of the white matter boundary before reaching a final termination point. Specifically, streamline termination points are calculated as the point on the GMWMI at which the streamline leaves the white matter without returning, rather than the first point at which the streamline leaves the white matter. Compared with traditional tractography approaches, the method tends toward longer, U-shaped streamlines connecting adjacent gyral crowns, thus providing an efficient approach to retrieve the U-fibres classically associated with SAF. On the other hand, it aggravates the gyral bias and compounds the impact of partial volume effects, given the freedom for streamlines to travel in and out of the grey matter. Thus, surface-based tracking is less suited for experiments that sample along the streamlines but may be appropriate for studying changes in streamline geometry and distribution. Thus far, while some studies have performed tractography seeding from the FreeSurfer mesh as described by Shastin et al. (2022; K. G. Schilling, Archer, Rheault, et al., 2023; K. G. Schilling, Archer, Yeh, et al., 2023), no studies to our knowledge have incorporated their relaxed version of ACT.

Prior to the work of Shastin et al. (2022), Gahm and Shi (2019) published a tractography approach also called Surface-based Tracking (Nie et al., 2023). This method was also derived from the MRtrix constrained spherical deconvolution approach, but rather than propagating streamlines in 3D space, they first projected adjacent FODs onto the FreeSurfer white matter mesh. FOD components radial to the mesh were discarded. Tractography was then performed over this derived, 2D manifold, resulting in a flat tractography reflecting only the diffusion components immediately tangential to the GMWMI. In their most recent report, the same group demonstrated a reduction of the projected FOD correlating with increased severity of tau pathology and clinical disease scores (Nie et al., 2023); however, to our knowledge the technique has not been applied in any other study of the SWM.

3.4.3 Inter-subject correspondence of SWM tracts using atlasing

Comparing MR imaging results across subjects requires the alignment and registration of subject-specific data to a common atlas. Most studies to date achieve this either by segmenting volumetric image data into an atlas of choice, or, for surface-based experiments, by parcellating the cortical surface. A parcellated cortical surface can be used in conjunction with tractography to create a structural connectome. The fibre bundles so delineated will bear some correspondence to white matter tracts formally defined in anatomical studies but are selected solely by their termination points, not by their overall course. Because cortical atlases afford no control over the morphology of the white matter bundles composing each connection, they are not an appropriate tool for the study of white matter fascicles as such.

The past 15 years have seen the rise of white matter atlases designed to address this problem. These atlases are created by running a clustering algorithm over tractography data, typically pooled over several subjects. Streamlines that share similar morphology and endpoints are grouped together into clusters. Clusters that are replicable across subjects are retained for the final atlas. After the desired number of stable clusters is defined, a labelling procedure will be followed, either automatically tagging clusters according to their interactions with cortical regions, or manual naming by a neuroanatomist. Future datasets can then be quickly segmented via clustering with the white matter atlas, allowing reproducible extraction of anatomical tracts.

An in-depth review and comparison of white matter atlas approaches specific to SWM has recently been contributed by Guevara et al. (2020). Here, we will review the developments made since then.

Much recent work has been dedicated to machine learning clustering approaches to improve the speed and accuracy of segmentation. Xue et al. (2023) developed a machine learning paradigm to cluster SWM streamlines according to the O’Donnell Research Group white matter atlas (F. Zhang et al., 2018). While machine learning methods have been used for some time (for review, see Ghazi et al. (2023)), the authors improved on previous methods by first labelling all streamlines as belonging to either the SWM or DWM, and retaining only the SWM streamlines. A more conventional machine learning labelling approach was then applied to the retained fibres. The resulting algorithm was faster than the reference methods, reasonably generalizable across datasets (although datasets similar to the Human Connectome Project dataset: multi-shell, high angular-resolution diffusion imaging (HARDI) data, performed best), and achieved at least a 93% cluster identification rate in healthy adult datasets.

Most clustering work thus far has been done solely on deterministic data, which does not fully reconstruct the entire U-fibre network (Guevara et al., 2020). Guevara’s group has more recently created an SWM atlas with probabilistic data, using multiple clustering and filtering steps to reduce noise and dimensionality (Mendoza et al., 2021; Román et al., 2022; Vázquez et al., 2020). Application of the atlas to new data was optimized with rather aggressive filtering, discarding as many as 50% of the incoming streamlines (Mendoza et al., 2024). The most reproducible filter was a convex hull algorithm (Kai et al., 2022) which discarded fibres with trajectories far removed from the overall shape of the bundle. Importantly, their work showed that segmenting consistent, reproducible bundles improves sensitivity when sampling microstructural measures. Comparing healthy subjects with autistic counterparts, filtered bundles were more likely to have significantly lower FA (Mendoza et al., 2024).

Unfortunately, current algorithms are designed to segment tracts with consistent cross-subject locations and shapes. This works well for long association fibres, the cores of which follow a very consistent course relative to tract volume. SAF location and morphology, on the other hand, vary significantly (Pron et al., 2021), comporting with the highly individualized folding patterns (Wachinger et al., 2015) of gyral architecture (Guevara et al., 2022; Mangin et al., 2019). For instance, the left hemisphere hand knob in the central sulcus and its associated SAFs occupy a more dorsal location in right-handed individuals than in left-handed individuals (Pron et al., 2021; Sun et al., 2012). Neglect of this variability will inherently limit the generalizability of white matter atlases.

Guevara et al. (2022) recently implemented a prototype solution on the SAF bundles in the central sulcus and superior temporal sulcus. Subjects were initially sorted into groups based on sulcal shape and the distribution of SAF bundles crossing the sulcus. Correspondence between bundles was then established, first within subject groups, then across all groups. This stratified approach identified more consistently shaped bundles across subjects than a traditional, whole-group clustering approach.

Nie et al. (2023) developed a clustering technique building on the group’s previous work running tractography on a 2D mesh representation of the SWM. By using the FreeSurfer registration technique, which is much more accurate for the cortical surface than traditional volume-based approaches, they were able to project their tractography to a sphere and perform clustering directly on the spherical surface, creating better correspondence between gyri (Y. Li et al., 2023). In their initial report, the method slightly outperformed a more traditional 3D clustering using QuickBundles, however, their test was performed on central sulcus U-fibres, which have a fairly stable form across subjects more amenable to volumetric clustering. Their method may hold greater potential for more irregular gyri.

The above approaches have both strengths and weaknesses. Guevara’s method performs well on a single sulcus, but attempting to stratify subjects based on the entire superficial connectome may not be feasible. Compounding variation across the various sulci would prevent the drawing of meaningful equivalence between any two subjects (Wachinger et al., 2015). Individual stratification of each sulcus, followed by the merging of sulcal subtypes to match a particular subject’s brain, may overcome this, assuming sulcal configurations are relatively independent from each other. Li’s approach embraces the fact that SAF morphology is directly linked to GMWMI geometry (Bodin et al., 2021) and incorporates that information elegantly into its clustering algorithm. However, it is limited by its sole use of diffusivity parallel to the cortical surface, eliminating all of the tangential information. We believe the ideal solution will incorporate both the surface information and the 3D tractography information; such an approach has yet to fully materialize.

4.1 SWM development

4.1.1 Pre-natal

Neuroimaging results from pre-term babies concur with the developmental picture established by histological studies (an overview of diffusion-weighted imaging methods can be found in Box 1). FA measurements in the SWM are lowest at 25 weeks and increase linearly with time until term (Fig. 2-A.2) (Schneider et al., 2016; Smyser et al., 2016; Yuan et al., 2023). This trajectory aligns with the retreat of the complex microenvironment of the subplate and its replacement with the relatively ordered white matter tracts. The opposite trajectory is observed in the grey matter. FA starts high in mid-gestation and declines toward birth (Ouyang et al., 2019; Schneider et al., 2016; Smyser et al., 2016; Yuan et al., 2023), with some studies reporting a plateau at about 38 weeks (Ouyang et al., 2019; Schneider et al., 2016). These findings likely correspond to the transformation of the radial glia, the dominant diffusive component mid-gestation, into astrocytes.

Fig. 2.

Illustration outlining the general developmental trajectories of various imaging parameters. Column (A): neonates and early childhood (25 weeks GA-5 years). (B): childhood and adolescence (5–30 years). (C): ageing (30–100 years). Row A: Start and end of each box correspond to the age range of the study cohort. Colour corresponds to the number of participants. ((Oyefiade et al., 2018), starred in the figure, have a cross-sectional and longitudinal component; they are listed separately). Studies listed are summarized in Table 2. Rows 2 and 3: FA and MD. Call-out boxes are used to clarify overlapping lines. Row 4: overall superficial white matter volume. In this row only, the purple hatched line should not be interpreted as including the PreCG, which is given its own line. Row 5: overall myelin levels, as determined by varying datatypes, including T2 hyperpolarization in A, magnetic transfer ratio (MTR) and macromolecular proton fraction in B, and MTR in C. All y-axes represent relative, approximate units. All trendlines are approximations from the cited literature. GA = gestational age; PreCG = pre-central gyrus; FA = fractional anisotropy; MD = mean diffusivity.

Fig. 2.

Illustration outlining the general developmental trajectories of various imaging parameters. Column (A): neonates and early childhood (25 weeks GA-5 years). (B): childhood and adolescence (5–30 years). (C): ageing (30–100 years). Row A: Start and end of each box correspond to the age range of the study cohort. Colour corresponds to the number of participants. ((Oyefiade et al., 2018), starred in the figure, have a cross-sectional and longitudinal component; they are listed separately). Studies listed are summarized in Table 2. Rows 2 and 3: FA and MD. Call-out boxes are used to clarify overlapping lines. Row 4: overall superficial white matter volume. In this row only, the purple hatched line should not be interpreted as including the PreCG, which is given its own line. Row 5: overall myelin levels, as determined by varying datatypes, including T2 hyperpolarization in A, magnetic transfer ratio (MTR) and macromolecular proton fraction in B, and MTR in C. All y-axes represent relative, approximate units. All trendlines are approximations from the cited literature. GA = gestational age; PreCG = pre-central gyrus; FA = fractional anisotropy; MD = mean diffusivity.

Close modal
Box 1

Interpreting diffusion-weighted imaging in the SWM

Although many modalities have been used to explore the SWM in health and disease, diffusion-weighted imaging has been especially popular for the rich information it provides and the relative ease of its acquisition. Common to all diffusion methods is the measurement of the diffusion of water in 3D space across one or more spatial scales. Different directions are sampled using orientation-specific encoding gradients, and the scale is determined by the strength and timing of the gradient, summarized mathematically by the b-value. Higher b-values are sensitive to increasingly smaller scales of diffusion. In free space, water will diffuse equally in all directions, but in a restricted microenvironment like the brain, cellular compartments create barriers for diffusion, resulting in a response signal dependent on the orientation and scale of observation. This signal can be used to model the microstructure, inferring what structure would have led to the observed signal (Alexander et al., 2019; Bihan & Iima, 2015; Jones et al., 2013).

Different modelling approaches incorporate varying levels of complexity. The most common approach, DTI, fits a 3D tensor at each voxel, representing the signal as an ovoid shape. From this tensor, various metrics can be computed, including FA, a value between 0 and 1 where 0 corresponds to a completely isotropic (i.e., spherical) diffusion signal and 1 corresponds to a completely anisotropic (i.e., 1-dimensional) signal. FA is high in regions with tightly packed, coherent fibres, notably the corpus callosum and other major white matter tracts. Reduced FA is often interpreted as a reduction in fibre integrity or reduced myelination; however, it is also reduced by increased somatic density, glial density, and by crossing axonal tracts. Because of its heterogeneous composition, the latter likely plays a more determining role in the SWM than the DWM. MD is the mean magnitude of the three eigenvectors, AxD is the magnitude of the longest (in principle lying parallel to the primary axonal population), and RD is the mean magnitude of the two short eigenvectors (lying perpendicular to the primary axonal population) (O’Donnell & Westin, 2011).

DTI assumes that all diffusion follows a Gaussian distribution. This assumption does not hold in complex tissue however, where barriers to diffusion constrain water within a small spatial extent. This results in excess kurtosis: fewer water molecules than expected will diffuse a given distance. In practice, this effect manifests only at b-values higher than those used by DTI (usually b >2000 s/mm2). Diffusion kurtosis imaging explicitly measures this phenomenon by sampling both low and high b-values to derive a parameter called mean kurtosis, the magnitude of which is proportionate to the local tissue complexity. In principle, this measure should be higher in the SWM than in the DWM. Although it captures a level of tissue complexity not observable by DTI, it is still quite non-specific and must be interpreted with caution (Steven et al., 2014).

The timing of these developments depends on the region. The time at which FA in the grey matter drops lower than that of the SWM is earliest in primary motor and visual areas (at around 34 weeks) and later in visual association and pre-frontal regions (36–45 weeks) (Smyser et al., 2016). At 28 weeks, FA in the SWM is lowest in the PFC and other association areas, but these regions subsequently have the fastest increases (Fig. 2-A.2) (Yuan et al., 2023). This is consistent with the longer persistence of the subplate in secondary and tertiary association areas (Kostović et al., 2014). Nevertheless, considerable regional heterogeneity remains. The cingulate gyrus, for example, has high FA already at 28 weeks, perhaps reflecting earlier development (Yuan et al., 2023). Converse trends are observed in the grey matter. FA declines fastest in the occipital lobe, frontal lobe, and temporal lobe, possibly somewhat later in the frontal lobe (Ouyang et al., 2019). Cortical FA in the pre- and post-central gyri, cingulate gyrus, and medial frontal lobe starts much lower and declines more slowly, again suggesting earlier development (Yuan et al., 2023).

Mean diffusivity (MD) generally declines in all grey matter and SWM areas throughout the cortex over the third trimester (Fig. 2-A.3) (Schneider et al., 2016; Smyser et al., 2016; Yuan et al., 2023). Mean kurtosis, a measure of microenvironment complexity (Steven et al., 2014), decreases throughout the cortical grey matter (Ouyang et al., 2019). These findings are somewhat harder to interpret but may reflect a reduction in cellular density and complexity in the cortical plate in the weeks before term.

T1 relaxation time declines and the T1/T2 ratio increases throughout the grey matter and SWM at about 35 weeks (Schneider et al., 2016; Yuan et al., 2023). Both measures are often used as a proxy for myelination in the grey matter of adults (Hagiwara et al., 2018), but in the white matter, they have almost no correlation with myelin water fraction (MWF), a more sensitive metric for myelin quantification (Arshad et al., 2017; Uddin et al., 2018). To our knowledge, no definitive histological corollary of T1/T2 signal in the complex pre-term microenvironment has been found, preventing decisive conclusions from these data.

Note that the developmental trajectory of pre-term babies may differ from normally developing children. Indeed, previous work has found extensive reductions in FA throughout the white matter in pre-term compared with full-term babies of equivalent age (Anjari et al., 2007). Difficulties in registration and controlling foetal movement currently make in utero scanning very difficult, but should these difficulties be resolved, such an approach may give a more accurate picture of normal pre-natal development (Stout et al., 2021).

4.1.2 Childhood

The most substantial changes in the aforementioned parameters occur during the pre-natal period and first few years of life (Lebel & Deoni, 2018). U-fibres undetectable on diffusion imaging at 3 months post-birth have near mature FA levels well within the first year (Hermoye et al., 2006). Across the whole white matter, FA and mean kurtosis reach stable plateaus between 1 and 3 years (Fig. 2-A.2, A.3) (Paydar et al., 2014).

Nevertheless, changes continue to occur throughout the brain over the course of childhood development and into adolescence, albeit at a slower rate (Lebel et al., 2008). FA linearly increases in SWM across the cortex, while MD and axial diffusivity (AxD) decrease (Fig. 2-B.2, B.3) (Oyefiade et al., 2018; Shukla et al., 2011; Tamnes et al., 2010; M. Wu et al., 2014). Both FA and MD eventually reach a stable developmental plateau lasting a few decades, before declining in old age (K. G. Schilling, Archer, Rheault, et al., 2023). This plateau arrives sooner (between 10 and 20 years of age) for primary motor and visual areas, and later (>20 years) for the frontal lobe, temporal lobe, cingulate gyrus, and other association areas (Tamnes et al., 2010).

SWM thickness increases by about 0.5% per year until about age 20 years (K. G. Schilling, Archer, Rheault, et al., 2023), such that in most regions, the total SWM volume increases by 10–20% between the ages 8 and 30 years (Fig. 2-B.4) (Tamnes et al., 2010). This growth proceeds slower than the overall expansion of the white matter, so that SWM volume relative to the total white matter decreases from 5 to 15 years. (Ouyang et al., 2016; K. G. Schilling, Archer, Rheault, et al., 2023). Throughout, SWM thickness is highest in the pre-central gyrus, followed by the frontal lobe, post-central gyrus, and occipital lobe, than the parietal lobe and temporal lobe (K. G. Schilling, Archer, Rheault, et al., 2023).

The changes observed beyond early childhood are quite subtle. The annualized rate of FA change across adolescence, for instance, generally ranges between 0.5% and 1%, and R2 values are usually below 0.25 (Tamnes et al., 2010; M. Wu et al., 2014), leaving a significant amount of individual variability. Thus, these changes can currently only be observed over decade-long time periods. This is highlighted by a recent study by Oyefiade et al. (2018), which found a significant increase in FA in all lobes except the occipital lobe using a cross-sectional sample of 5- to 18-year-old participants but almost no significant differences in a longitudinal analysis of equivalently aged subjects scanned over a 5-year timeframe.

4.1.3 Myelination

Although its precursors are visible as early as 20 weeks post-conception, the slow progression of myelination continues throughout a child’s first few years, possibly extending beyond adolescence. As shown by histological studies, myelination proceeds from caudal to rostral regions, from deep to superficial, in sensory pathways before motor, and in projection before association fibres (Kinney et al., 1988; Martin et al., 1988). Thus, SWM, especially in the frontal lobe, is the last of the white matter to myelinate. While most myelination is complete by about 18 months, the SWM and peritrogonal areas, known as the terminal regions, have a slower course of development. T2 hyperintensity, associated with a lack of myelin, only disappears from the peritrogonal areas and parietal SWM by 20 months post-natal. Hyperintensities linger in the frontal lobe and temporal lobe until around 40 months (Fig. 2-A.5) (Maricich et al., 2007; Parazzini et al., 2002).

The long-term course of SWM myelination remains relatively uncharacterized. Studies frequently claim the myelination process continues until the third or fourth decade of life, an idea originating from an early histological study that observed unmyelinated association fibres in subjects so aged (Yakovlev, 1967). As mentioned above, certain regions of the SWM do follow a longer developmental trajectory (Dubois et al., 2014), and in general, the central, deeper portions of white matter tracts have greater age-related changes in early childhood than the cortical termination points (Geng et al., 2012). Histological observations in adolescents confirm the SWM remains relatively less myelinated than the DWM within the first two decades of life. (Sarnat et al., 2018). However, it is not clear whether this lower myelination reflects a longer developmental timeframe or characterizes a normal, mature SWM. Maturational delay certainly does not appear to be a universal feature of the SWM. For instance, a Tract-Based Spatial Statistics (TBSS) analysis of magnetization transfer ratio (MTR) in children of ages 7–14 years failed to find any effect of age, either in deep or superficial regions (Moura et al., 2016). In likely the most specific brain-wide study published to date, Corrigan et al. (2021) characterized a well-validated, myelin-sensitive parameter, macromolecular proton fraction (Kisel et al., 2022; Yarnykh, 2002), across the grey matter and SWM. They observed a spatially widespread, positive effect of age on myelin levels throughout the grey matter in participants aged 9–17 years. In the white matter, however, significant effects were limited to the pre- and post-central gyri, orbito-frontal cortex, and right superior temporal gyrus. At a lobe-wide scale, only the temporal lobe was significantly affected. No effect was found in the DWM. Thus, at least some portions of the SWM appear to undergo ongoing myelination throughout adolescence, but the scope of such processes may be limited. Further research is needed to both validate these findings and determine when myelination finally concludes (Fig. 2-B.5).

Furthermore, recent advances in iron-sensitive imaging suggest that reduced myelin may be a defining characteristic of the SWM. A study by Kirilina et al. (2020) used histology and high-resolution, quantitative MR imaging (measuring R2, R2* (Bagnato et al., 2011; Fukunaga et al., 2010), and χ) to demonstrate a prominent band of iron from 0.5 to 2 mm thick immediately beneath the GMWMI in the post-mortem brain of an elderly adult (Fig. 1-C). Outside of this band, myelin signal in the white matter was at a stable, DWM level. Within the band, it linearly dropped to grey matter levels. This finding was recently reproduced in the middle frontal sulcus and pre-central sulcus of young adults 20–30 years old by Lee et al. (2023). They used a novel technique to separate the iron and myelin contributions to quantitative susceptibility mapping (QSM) (χ-separation) (Shin et al., 2021), corroborating the method with MWF. They observed the same iron and myelin patterns as Kirilina et al. (2020). Thus, given the reduced SWM myelin levels observed even in an elderly adult (Kirilina et al., 2020), reduced myelin signal near the GMWMI may be a persistent feature throughout life. However, no study of a myelin-sensitive parameter, such as MTR or MWF, has yet reported a specific comparison between SWM and DWM levels across the lifespan.

The cause of persistently reduced SWM myelin throughout life, assuming the existence of the phenomenon, is open to speculation. The SWM forms a transition zone between the DWM and the grey matter. WMIN density increases closer to the GMWMI, and the dominant diffusion signal, oriented tangentially to the GMWMI in the SWM, gives way to the radially oriented signal in the grey matter. Thus, the linear drop in myelin signal may simply reflect the SWM becoming more “grey matter-like” as it nears the GMWMI. Increased cell density restricting the spatial extent of myelin (causing partial volume-like effects on imaging), increased density of unmyelinated interneurons (Smiley et al., 1998), or reduced myelin levels across some or all axons could play roles. More speculatively, high iron levels colocalized with increased oligodendrocyte density (Kirilina et al., 2020) provide the machinery for ongoing myelination (J. R. Connor & Menzies, 1996). This could be the product of myelin flux as connections are continually formed and pruned.

4.1.4 Cortical folding

The relative consistency of the cortical folding pattern and the differences in SWM between gyral blades and under sulcal fundi has inspired hypotheses relating SAFs to the formation of gyral folds. The tension-based morphogenesis hypothesis, among the most prominent, suggests that axonal tension arising from strongly connected areas directly contributes to the stereotyped folds observed in humans (Essen, 1997). Cortical folding is beyond the scope of this article but has been reviewed elsewhere (Llinares-Benadero & Borrell, 2019; Mangin et al., 2019).

4.2 SWM and ageing

While diffusivity metrics across the SWM remain relatively consistent post-adolescence, long-term ageing is associated with the decline of FA and the increase of MD and AxD (Fig. 2-C.2, C.3) (Malykhin et al., 2011; Nazeri et al., 2015; Phillips et al., 2013; Pietrasik et al., 2023; K. G. Schilling, Archer, Yeh, et al., 2023). The robustness of this finding has been very recently confirmed in a 1293-subject longitudinal study by K. G. Schilling, Archer, Yeh, et al. (2023), with significant results in every SWM fibre bundle analyzed. As in earlier development, the annualized change is modest, with FA declining at about 0.25% per year. Additionally, myelin-sensitive signals, including MTR and myelin volume fraction, decline in most regions (Fig. 2-C.5) (Hagiwara et al., 2018; M. Wu et al., 2016). Regions with earlier myelin maturation, such as the superficial pre- and post-central gyri, maintain robust myelination longer than other gyri (Kakeda et al., 2016).

Less certain is the age at which these changes begin. All current studies concur they start no later than the age of 50 years in healthy adults (Malykhin et al., 2011; Nazeri et al., 2015; Phillips et al., 2013; Pietrasik et al., 2023; K. G. Schilling, Archer, Rheault, et al., 2023; K. G. Schilling, Archer, Yeh, et al., 2023). However, amongst studies of individuals younger than 50 years, some report changes beginning at age 40–50 years (Malykhin et al., 2011; Pietrasik et al., 2023; K. G. Schilling, Archer, Rheault, et al., 2023; M. Wu et al., 2016), while others report changes as early as 30 years (Nazeri et al., 2015; Phillips et al., 2013). Interestingly, the studies endorsing later onset all use a tractography approach to define the SWM, while the early onset studies use voxel-wise, atlas-based methods such as TBSS. One possible explanation for the discrepancy may be that tractography-based approaches sample a larger, deeper region of white matter, given the lack of absolute volume constraint. This is decidedly the case in Malykhin et al. (2011) and Pietrasik et al. (2023), both of which analyze very large white matter bundles, some of which pass through the arcuate fasciculus and corpus callosum. These larger ROIs bias the results toward the time course of DWM ageing, the onset of which has been reported at 40 (Beck et al., 2021) to 50 (Sexton et al., 2014) years of age. Furthermore, there is evidence suggesting that the last white matter fascicles to mature are the first to decline (Bender et al., 2016). Thus, studies defining SWM to a narrower volume may find earlier changes than those sampling from deeper white matter. This hypothesis must be confirmed by future experiments.

Changes in the SWM have been associated with cognitive decline in otherwise healthy adults. Nazeri et al. (2015) reported a correlation between FA in the parieto-occipital areas and visuomotor attention. FA in the pre- and post-central gyri was correlated with fine motor performance. Given the cross-sectional dataset used, these results inform us about the effect of diffusion tensor imaging (DTI) metrics on cognitive performance without respect to age. To our knowledge, no one has used longitudinal data to study the effects of individual age-related DTI changes on cognitive decline.

4.3 SWM and disease

The collateralized blood supply of the SWM and the relatively late maturation of its microstructure give it a unique profile of vulnerability to disease compared with the DWM and cortex. For example, the SWM is typically spared from small vessel disease otherwise common in the white matter. Certain genetic disorders affecting the metabolism and production of myelin, including metachromatic leukodystrophy and X-linked adrenoleukodystropy, also spare the SWM until later in the disease course, due to its slower rate of myelin metabolism. Such diseases have been reviewed elsewhere (Riley et al., 2018). Here, we will focus on diseases that have been studied using neuroimaging, especially dMRI studies that have looked particularly at the SWM (Ouyang et al., 2017).

4.3.1 Schizophrenia

Schizophrenia is a chronic disorder associated with positive (delusions, hallucinations, thought and language disorder, etc.) and negative (anhedonia, alogia, etc.) symptoms (Keshavan et al., 2008; Tandon et al., 2009). A previous mega-analysis has reported a significant, substantial reduction of FA in the DWM, especially affecting callosal and long association fibre systems (Kelly et al., 2018). Far fewer studies have specifically investigated the SWM, but their collective findings suggest a reduction in superficial FA throughout the frontal lobe (Ji et al., 2019; Joo et al., 2023; Kai et al., 2023; Nazeri et al., 2013). A few studies additionally found reduced FA in the occipital lobe (Joo et al., 2023; Nazeri et al., 2013; Phillips et al., 2011), parietal lobe (Joo et al., 2023), and precuneus (Ji et al., 2019; Nazeri et al., 2013). Methodologies vary; older studies used TBSS (Nazeri et al., 2013) and mesh projection (Phillips et al., 2011), while newer studies (Ji et al., 2019; Kai et al., 2023) have taken advantage of SWM bundle atlases (Guevara et al., 2017; F. Zhang et al., 2018).

Kai et al. (2023) reported relatively little difference between early-stage schizophrenia patients and controls; however, their study was performed on a first-episode, mostly untreated sample, indicating a difference between this population and their chronic counterparts. Supporting this notion, Ji et al. (2019) found lower FA in certain SWM fibre bundles in patients with more olanzapine equivalents. Because the study was cross-sectional, it cannot prove that medication or disease exposure directly lowers FA. Pre-existing low FA may alternatively increase susceptibility toward longer disease duration or reduced treatment response. However, a study by Halene et al. (2016) in macaques reported a direct effect of clozapine exposure on increased WMIN density, a phenomenon which would, in principle, decrease SWM FA. Nevertheless, no replication of this finding has been made in humans, and no longitudinal studies of SWM diffusion metrics in schizophrenia have been performed, rendering these hypotheses speculative.

The lower SWM FA reported in patients may reflect somatic changes rather than changes in myelination or axonal organization. Compared with controls, SWM in the dorsolateral PFC of patients has increased WMIN density (Duchatel et al., 2019; Eastwood & Harrison, 2003, 2005; Kirkpatrick et al., 2003; Yang et al., 2011). Increased WMIN density can also be seen in the superior temporal gyrus (Eastwood & Harrison, 2003), the cingulate gyrus (C. M. Connor et al., 2009), and the orbito-frontal cortex (Joshi et al., 2012).

This increase in WMIN density is accompanied by the decline of certain grey matter neural populations, including somatostatin+ (Yang et al., 2011), Dlx1, and GAD76 (Joshi et al., 2012) neurons, all of which are GABAergic inhibitory neurons. Such mirrored effects in the two layers may reflect failed migration of interneurons from white to grey matter (Carrel et al., 2015; Tee & Mackay-Sim, 2021).

Oligodendrocyte density is also increased in the SWM of schizophrenia patients (Bernstein et al., 2012, 2016). This elevation predicts an increase in SWM iron concentration: much of the SWM iron signal colocalizes with oligodendrocytes (Kirilina et al., 2020), iron is an important cofactor in myelin synthesis, and oligodendrocytes express a protein profile optimized for iron acquisition and utilization (J. R. Connor & Menzies, 1996). Thus, MR imaging methods sensitive to iron levels may be a productive, non-invasive means of future investigation. Histological examination has found a general increase in iron in the PFC grey matter (Lotan et al., 2023), and a few studies have used varying iron-sensitive signals (QSM and an inverse normalized T2) to study schizophrenia, finding increased signal in the putamen (Ravanfar et al., 2022), thalamus (Sonnenschein et al., 2022; Xu et al., 2021), substantia nigra, and red nucleus (Xu et al., 2021). No studies, to our knowledge, have explored iron levels specifically in the SWM. As mentioned above in our discussion of myelination, Shin et al. (2021) have recently developed a method called χ-separation, which distinguishes the QSM contributions from iron and myelin for independent quantification. The technique was specifically applied to analysis of the SWM (Lee et al., 2023), and should be useful for application in disease studies.

4.3.2 Dementia

Studies of SWM in Alzheimer’s disease (AD) have consistently reported reduced FA and increased MD, radial diffusivity (RD), and AxD throughout the brain, especially in the temporal lobe (Bigham et al., 2020; Contarino et al., 2022; Phillips, Joshi, Piras, et al., 2016; Reginold et al., 2016), although various studies have also implicated the PFC (Phillips, Joshi, Piras, et al., 2016), limbic cortex, insular cortex (Bigham et al., 2020), and parietal lobe (Contarino et al., 2022; Veale et al., 2021). A study using the neurite orientation dispersion and density imaging (NODDI) model (H. Zhang et al., 2012) found reduced neurite density index (NDI) in the parietal lobe and parahippocampal gyrus, reflecting an increased proportion of signal attributed to non-neurite space. It also reported increased orientation dispersion index (ODI) in the parahippocampal gyrus and fusiform gyrus, reflecting a higher distribution of neurite angles (Veale et al., 2021). MTR, a proxy for myelin, is reduced compared with healthy, age-matched controls throughout the brain (Fornari et al., 2012). Additionally, the regional covariance of MTR levels, especially among long-range connections, is reduced, meaning regions geometrically distant from each other tend to have different MTR levels in AD patients (Carmeli et al., 2014).

The diffusivity results align with previously identified histological changes. Nitrinergic cells in the SWM are relatively spared by AD, showing no decline in density and no association with tau-reactive neurofibrillary tangles. They do, however, present disrupted morphology and reduced fibre density (Kowall & Beal, 1988; Norris et al., 1996; Tao et al., 1999), possibly contributing to increased ODI and decreased NDI.

The SWM appears to be more specifically involved in fronto-temporal lobar degeneration (FTLD), specifically the FTLD-TDP subtype, often associated with mutations in the progranulin gene (Baker et al., 2006). Compared with AD, much of the FTLD pathology is subcortical, with extensive microglial activation (Lant et al., 2014; Sakae et al., 2019; Taipa et al., 2017) and histologically observable pathology localized to the white matter (Giannini et al., 2021). Pathological findings notably include thread-like processes that appear to arise from oligodendrocytes (Giannini et al., 2021; Hiji et al., 2008; Mackenzie & Neumann, 2020; Neumann et al., 2007). The pathophysiological significance of these findings is not currently understood. Imaging studies have concurringly observed T2 hyperintensities and T1 hypointensities in the SWM of the frontal lobe (Caroppo et al., 2014) and temporal lobe (Mori et al., 2007). Interestingly, both the imaging results (Domínguez-Vivero et al., 2020; Mori et al., 2007) and the oligodendrocyte pathology (Giannini et al., 2021, 2023; Hiji et al., 2008) are specific to FTLD-TDP (as opposed to the tau subtype of FTLD and other motor disorders such as amyotrophic lateral sclerosis). This does not prove that the changes on imaging are caused specifically by oligodendrocyte pathology, but the disorder may prove an interesting model for relating imaging to histology.

4.3.3 Autism spectrum disorder

ASD has been generally linked to hyperconnectivity locally, but hypoconnectivity globally (Ouyang et al., 2017). For example, in a TBSS analysis, long skeletal tracts situated in the DWM generally had lower FA, but amongst the shorter tracts in the SWM, only the frontal lobe was affected (Shukla et al., 2011). A histological study, in turn, reported a reduction in long-range, large-diameter neurons in the DWM below the anterior corpus callosum, with a correspondingly increased density of small diameter, short-range fibres in the SWM explainable by increased fibre branching. No significant results were found in the dorsolateral PFC however (Zikopoulos & Barbas, 2010).

Recent studies have linked diffusion parameters in the SWM with task performance and symptom scores. d’Albis et al. (2018) found reduced FA in ASD patients in a structural component incorporating SAFs from the temporal lobe, parietal lobe, and frontal lobe. Lower FA in this component correlated with decreased performance in social awareness, pragmatic skills, and empathy evaluation tests. In an additional component localized to the supplementary motor area and insular cortex, lower FA correlated with reduced language structure and social awareness. Thompson et al. (2017) found a positive correlation between FA in the hand knob fibres and performance in a fine-motor task. Bletsch et al. (2021) associated disease severity with lower FA in the right PFC and temporal lobe and the left fusiform gyrus, inferior temporal gyrus, and orbito-frontal cortex.

4.3.4 Epilepsy

In temporal lobe epilepsy patients, reduced FA and increased MD have been found in the temporo-parietal connection, orbito-frontal cortex, cingulate gyrus, and medial temporal lobe ipsilateral to the epileptic lesion. Contralateral effects were scattered across the medial aspect of the hemisphere, with some lateral FL involvement (Liu et al., 2016; Urquia-Osorio et al., 2022). This reduction in FA has been linked to a decrease in neurite density using the NODDI model and correlated with disease duration (Winston et al., 2020). SWM involvement has also been reported in focal cortical dysplasia, although damage is more restricted to the site of the dysplasia (Urquia-Osorio et al., 2022). Histologically, an increased number of neurons, especially heterotopic neuronal synaptic plexi, can be found in the SWM in the disease, with evidence of increased metabolism. These cells are thought to participate in epileptic circuits (Sarnat et al., 2018). In Rolandic epilepsy, increased MD, RD, AD, and, contrary to the normal pattern, FA were found specifically in the pre- and post-central gyri (Ostrowski et al., 2019). FA furthermore negatively correlated with fine motor skills, opposite the association observed in autism (Thompson et al., 2017).

4.3.5 Other diseases

SWM has been cursorily studied in a number of other diseases. While it is not our intention to provide a complete documentation of these diseases and the potential impacts of SWM involvement, we summarily note previous investigations in Huntington’s disease (Phillips, Joshi, Squitieri, et al., 2016), anti-NMDA receptor encephalitis (Phillips et al., 2018), Parkinson’s disease (Y. Zhang et al., 2022), multiple sclerosis (Buyukturkoglu et al., 2022; Komnenić et al., 2024), Tourette syndrome (Wen et al., 2016), bipolar disease (S. Zhang et al., 2018), traumatic brain injury (Stojanovski et al., 2019), cerebral small vessel disease (S. Wang et al., 2022), multiple system atrophy (Del Campo et al., 2021), and various other developmental and metabolic disorders (Riley et al., 2018). In all cases mentioned above, the authors report reduced FA and a corresponding increased MD, AxD, and RD, the distribution of which depends on the disease. In general, however, the frontal lobe and temporal lobe are very often involved.

5.1 Segmenting the superficial and deep white matter

Distinguishing the SWM from the DWM, both in histological studies and neuroimaging, remains a persistent problem. Unlike the GMWMI, easily identified on both T1- and T2-weighted MR images and on histological sections, no sharp delineation exists between the SWM and DWM, and no consistent rule has been adopted to segment the two regions (Meyer et al., 1992; Sedmak & Judaš, 2019). This creates a special challenge for dMRI experiments, often acquired with the rather low 2 mm isotropic resolution and, therefore, vulnerable to partial volume effects. Voxels spanning the SWM–DWM boundary contain mixed signal from both tissue layers, but if this boundary cannot be reliably identified, identification and correction of such voxels become impossible.

Many studies use voxel-based ROIs to define the SWM. A popular segmentation created by Oishi et al. (2008) selects mainly the intra-gyral space as the SWM compartment. Others define a layer of fixed width extending from the GMWMI. Sedmak and Judaš (2019) recently proposed a depth of 3 mm, targeting a layer comprising only definitive remnants of the subplate. Other studies have performed such depth sampling up to 5 mm deep (M. Wu et al., 2016). All of these definitions, however, are somewhat arbitrary, ignoring variation across subjects, across the lifespan, and across brain regions. Moreover, they all likely overestimate the thickness of the layer. Recent dissection work by Dannhoff et al. (2024) measured SAF thickness underneath the superior temporal sulcus as ranging from 0.5 to 3 mm. Accurate segmentation on imaging would thus require a minimum 0.5 mm isotropic resolution, not currently routinely collected for either anatomical or diffusion protocols.

Tractographic approaches analyze the voxels traversed by tracts of interest. SAFs are selected either using inclusion and exclusion ROIs, or using an SWM atlas (Guevara et al., 2020). The measured SWM thickness depends on the number of voxels occupied by SAF streamlines which, in turn, depends on the image resolution. For studies with the common 2 mm isotropic resolution, this will mean a thickness of 4–8 mm, depending on the region. As mentioned above, this will likely overestimate the actual thickness of the SAF bundles. To our knowledge, the exact relationship between SAF bundle thickness and image resolution has not yet been characterized, so it is not clear whether imaging results will reflect histological ground truth at sufficiently high resolution. If imaging persistently overestimates SAF thickness, perhaps an inevitable consequence of partial volume effects, a corrective factor could potentially be applied, but this would require a normative SAF thickness atlas across the entire brain.

Histological studies have used WMIN cell count as a marker, given the rarity of WMINs in the DWM. Because cell density decreases on a gradient, however, the definition remains rather arbitrary, resulting in wide range of SWM cell counts (Eastwood & Harrison, 2005; García-Marín et al., 2010; Sedmak & Judaš, 2019).

The iron-sensitive imaging results of Kirilina et al. (2020) and Lee et al. (2023) suggest a potential quantitative definition of the SWM, based on the hyperintense band of iron deep to the GMWMI and the colocalized drop in myelin signal. This band ranged from 0.5 to 2 mm thick depending on the region and appeared to correspond to an expanded population of oligodendrocytes (Kirilina et al., 2020). It also concurs with the SAF thickness reported in Dannhoff et al. (2024). Acquisition of this signal, however, requires a QSM sequence neither routinely collected in imaging paradigms nor commonly available in open datasets.

As the distinction between SWM and DWM inherently exists on a gradient, no single, cross-modality definition will likely ever exist. Unfortunately, however, the diverse segmentation methods used across developmental and disease studies result in dramatically different SWM definitions, varying by volume, thickness, and, in the case of TBSS and tractography studies, sampling weight. Such inconsistent definitions challenge the construct validity of these experiments and limit meaningful comparison between them. Future reliance on SWM atlases will help rectify this, as the SWM definition will be directly based on the presence of SAFs, one of the cardinal features of SWM. Finally, true segmentation of the SWM in diffusion scans will require images of 2–4-fold higher resolution than typically obtained, likely not technically feasible for most studies at this time. Therefore, careful reporting and justification of segmentation method will remain important to ensure replicability and cross-study comparability.

5.2 Interpretation of diffusion parameters

The complexity of the tissue in the SWM amplifies the challenge of interpreting basic diffusion parameters such as FA. Indeed, the predominance of reduced FA and increased MD, RD, and AxD across the diverse diseases previously discussed highlights the sheer non-specificity of these markers. Reduced FA in the SWM does not even consistently mark the presence of illness. We previously referred to the study of children with Rolandic epilepsy, where higher FA in the pre- and post-central gyri was associated with worse motor performance (Ostrowski et al., 2019). We can also highlight a study which found reduced FA in the SWM of accomplished gymnasts, compared with non-athletically trained controls (Deng et al., 2018).

This non-specificity may be attributed to the large variety of cellular and molecular factors that influence diffusivity. Many authors associate reduced FA with disruption to white matter integrity, but although this simplistic explanation has some empirical basis in the DWM (Holleran et al., 2017), its assumptions do not hold in the SWM. Interpretations of diffusivity changes must further consider the greatly elevated density of WMINs relative to the DWM, the greater population of oligodendrocytes, and the complex mesh of neural fibres running both tangentially and radially to the GMWMI (Yao et al., 2023). For example, as previously discussed, WMINs of the SWM are affected in schizophrenia patients, likely influencing the FA in the region.

Such interpretive challenges can be mitigated by the use of more specific imaging parameters. Robust markers of myelination, such as MTR and macromolecular proton fraction (Kisel et al., 2022), have been under-used in the SWM disease literature. Recent developments in iron-sensitive imaging may also prove useful, especially if its previously observed colocalization with oligodendrocytes proves replicable. Some studies mentioned have used the NODDI model (H. Zhang et al., 2012) of diffusion (Veale et al., 2021; Winston et al., 2020). This paradigm segments the diffusion signal into neurite and extra-neurite compartments, giving more specific insight into the composition of the tissue. The more recently developed soma and neurite density imaging (SANDI) model (Palombo et al., 2020), as yet unused in the SWM literature, further splits the extra-neurite space into an intra-soma space and an extra-cellular space. Given the high cell density in the SWM, this approach may be especially well suited for future study, however, its derivation requires an extensive, specialized MR sequence with a max b-value of 10,000 s/mms. Finally, J. He and Wang (2024) have proposed a diffusion model incorporating water exchange both across cell membranes and between soma and axons, specifically to account for the unique mixture of neurons and neurites found in the SWM. Their current results appear to accurately delineate the SWM, although this remains to be validated. It has the further advantage over SANDI of requiring fewer, lower b-values, and fewer directions, which would allow a shorter scan time. Although the technology for many of these models may currently be beyond the means of many clinical studies, they offer a promising, more specific look into SWM microstructure moving forward.

5.3 Imaging of specific histological characteristics

In general, imaging parameters and particular histological properties do not have any direct correspondence (Lerch et al., 2017) outside of highly specialized acquisitions or very particular disease states. The closest examples discussed in this review include the various myelin-sensitive and iron-sensitive imaging methods. It is, therefore, critical to avoid over-interpretation of imaging results in the absence of ground-truth data. Nevertheless, the general sensitivities of various MR acquisitions to tissue characteristics can and should guide the design of imaging paradigms. In Table 3, we present a non-exhaustive summary of the sensitivities of some mainstream structural MR modalities. Numerous quantitative imaging types are now available, and their delineation with a full discussion of their strengths and weaknesses is well beyond the scope of this review.

Table 2.

Summary of literature on superficial white matter development.

ReferenceAge rangeParticipantsDesignModalities
(M. Wu et al., 201410–18 133 Cross-sectional FA, MD, AD, RD 
(Tamnes et al., 20108–30 168 Cross-sectional FA, MD, SWM Volume 
(K. G. Schilling, Archer, Yeh, et al., 20235–100 2421 Cross-sectional SWM Volume 
(Ouyang et al., 20162–25 21 Cross-sectional # Short Streamlines / # Total Streamlines 
(Oyefiade et al., 20185–18 78 Cross-sectional FA, MD, AD 
(Oyefiade et al., 20185–17 26 Longitudinal FA, MD, AD 
(Shukla et al., 20119–19 24* Cross-sectional FA 
(Yuan et al., 202324GA–Term 78 Longitudinal FA, MD, T1/T2 
(Smyser et al., 201625GA–Term 105 Longitudinal FA, MD 
(Schneider et al., 201625GA–Term 51 Longitudinal T1, FA, ADC 
(Parazzini et al., 200220–40 mn 85 Cross-sectional T2 
(Malykhin et al., 201122–84 69 Cross-sectional WM Volume, FA, MD, AD, RD 
(Phillips et al., 201318–74 65 Cross-sectional FA, AD, RD 
(Pietrasik et al., 202318–85 140 Cross-sectional FA, MD, AD, RD, WM Volume 
(K. G. Schilling, Archer, Rheault, et al., 202350–98 1293 Longitudinal FA, MD, AD, RD, SWM Volume 
(M. Wu et al., 201630–85 66 Cross-sectional MTR 
(Paydar et al., 20140–4 59 Cross-sectional FA, MK 
(Hermoye et al., 20060–4 30 Cross-sectional FA, ADC, nb0 
(Hagiwara et al., 202121–86 114 Cross-sectional T1, T2, PD, MVF 
(Lebel et al., 20085–30 202 Cross-sectional FA, MD 
(Moura et al., 20167–14 176 Cross-sectional FA, MD, MTR 
(Nazeri et al., 201518–86 141 Cross-sectional FA, MD, RD 
(Corrigan et al., 20219–17 146 Cross-sectional MPF 
ReferenceAge rangeParticipantsDesignModalities
(M. Wu et al., 201410–18 133 Cross-sectional FA, MD, AD, RD 
(Tamnes et al., 20108–30 168 Cross-sectional FA, MD, SWM Volume 
(K. G. Schilling, Archer, Yeh, et al., 20235–100 2421 Cross-sectional SWM Volume 
(Ouyang et al., 20162–25 21 Cross-sectional # Short Streamlines / # Total Streamlines 
(Oyefiade et al., 20185–18 78 Cross-sectional FA, MD, AD 
(Oyefiade et al., 20185–17 26 Longitudinal FA, MD, AD 
(Shukla et al., 20119–19 24* Cross-sectional FA 
(Yuan et al., 202324GA–Term 78 Longitudinal FA, MD, T1/T2 
(Smyser et al., 201625GA–Term 105 Longitudinal FA, MD 
(Schneider et al., 201625GA–Term 51 Longitudinal T1, FA, ADC 
(Parazzini et al., 200220–40 mn 85 Cross-sectional T2 
(Malykhin et al., 201122–84 69 Cross-sectional WM Volume, FA, MD, AD, RD 
(Phillips et al., 201318–74 65 Cross-sectional FA, AD, RD 
(Pietrasik et al., 202318–85 140 Cross-sectional FA, MD, AD, RD, WM Volume 
(K. G. Schilling, Archer, Rheault, et al., 202350–98 1293 Longitudinal FA, MD, AD, RD, SWM Volume 
(M. Wu et al., 201630–85 66 Cross-sectional MTR 
(Paydar et al., 20140–4 59 Cross-sectional FA, MK 
(Hermoye et al., 20060–4 30 Cross-sectional FA, ADC, nb0 
(Hagiwara et al., 202121–86 114 Cross-sectional T1, T2, PD, MVF 
(Lebel et al., 20085–30 202 Cross-sectional FA, MD 
(Moura et al., 20167–14 176 Cross-sectional FA, MD, MTR 
(Nazeri et al., 201518–86 141 Cross-sectional FA, MD, RD 
(Corrigan et al., 20219–17 146 Cross-sectional MPF 
*

Excludes disease arm of study.

GA = gestational age; FA = fractional anisotropy; MD = median diffusivity; AD = axial diffusivity; RD = radial diffusivity; ADC = apparent diffusion coefficient; MVF = myelin volume fraction; MTR = magnetic transfer ratio; PD = proton density; SWM = superficial white matter; MK = mean kurtosis; MPF = macromolecular proton fraction.

Table 3.

Structural MR acquisitions with an overview of histological sensitivities.

ParameterAcquisitionSensitivityStrengthsWeaknesses
T1, T2, T1/T2 T1 w and T2 w Myelin (Glasser & Van Essen, 2011Routinely available, easily calculated. Highly non-specific: Unsuitable for quantitative use in WM (Arshad et al., 2017; Hagiwara et al., 2018; Parent et al., 2023; Uddin et al., 2018). 
R1 (1/qT1) Quantitative T1 mapping (such as MP2RAGE) Myelin (Lutti et al., 2014), iron, tissue hydration, protein content (Hagiwara et al., 2018; Hertanu et al., 2022Does not require a special scan for derivation. Better specificity to myelin than regular T1, T2 parameters (Parent et al., 2023). Not wholly specific to myelin. 
MTw parameters (MTR, MPF (Kisel et al., 2022), ihMT (Girard et al., 2015), MTsat (Helms et al., 2008)) Magnetization Transfer-weighted imaging Myelin (Morris et al., 2023; Soustelle et al., 2019The more recently developed parameters, including MPF and ihMT, are highly specific to myelin. The classic MTR derivation is somewhat non-specific, with sensitivity to water content and axonal density (Hagiwara et al., 2018; Vavasour et al., 2011). More recent parameters have been largely restricted to the experimental imaging literature, with less clinical application 
MWF T2 relaxometry Myelin (Laule & Moore, 2018Good dynamic range, and lower sensitivity to axonal directionality (Morris et al., 2023). Has a worse correlation with ground-truth myelin (as measured with myelin basic protein staining in a mouse model) than MPF (Soustelle et al., 2019). 
DTI parameters (FA, MD, RD, AxD) Diffusion scan: minimum 1 b-value, six directions but preferably more (Lebel et al., 2012; K. G. Schilling et al., 2017Myelination, axonal integrity, somatic density, neurite density (Galbusera et al., 2023; Gulani et al., 2001; Jones et al., 2013Routine acquisition in research settings. One of the simplest diffusion acquisition paradigms, making it appealing for clinical applications. Extensive literature for comparison. Non-specific, both in terms of histological correspondance and disease involvement. 
Kurtosis Diffusion scan (minimum 2 b-values of roughly 1000 and 2000) Microstructural complexity (Jensen et al., 2005; E. X. Wu & Cheung, 2010Better specificity to structural changes in GM. Non-specific to nature of structural change (e.g., axonal changes, somatic changes). Traditional derivations may not be robust (Henriques et al., 2021). 
NODDI Diffusion scan: b-values of approximately 1000 and 2000 with 30–60 directions each (H. Zhang et al., 2012Intra-neurite, extra-neurite, and free water compartments (H. Zhang et al., 2012Better specificity to somatic vs. neurite structure in complex tissue Acquisition not available yet for many clinical contexts. Will not distinguish varying cell types with broadly similar structure (e.g., interneurons vs. glia) 
SANDI Diffusion scan: b-values of 1000, 3000, 5000, and 10,000, with 64–128 directions each (Palombo et al., 2020Intra-neurite, intra-somatic, extra-somatic, free water (Palombo et al., 2020Intra- and extra-somatic compartments allow quantification of cellular changes. Highly involved acquisition is currently inaccessible to most studies, especially clinical. 
Susceptibility-weighted parameters (R2*, χ, χ-separation (Shin et al., 2021)) Susceptibility-weighted imaging/quantitative susceptibility mapping (Ruetten et al., 2019Myelin, iron Well-validated, widely used acquisitions, with good specificity. Able to seperate iron and myelin (paramagnetic and diamagnetic strictly speaking) contributions to signal. Not routinely acquired for clinical studies. 
Proton Density Proton density-weighted imaging (Mezer et al., 2016Apparent water concentration, inverse of lipid and macromolecular density Well-validated, alternative measure of lipid density Not routinely acquired for clinical studies. 
ParameterAcquisitionSensitivityStrengthsWeaknesses
T1, T2, T1/T2 T1 w and T2 w Myelin (Glasser & Van Essen, 2011Routinely available, easily calculated. Highly non-specific: Unsuitable for quantitative use in WM (Arshad et al., 2017; Hagiwara et al., 2018; Parent et al., 2023; Uddin et al., 2018). 
R1 (1/qT1) Quantitative T1 mapping (such as MP2RAGE) Myelin (Lutti et al., 2014), iron, tissue hydration, protein content (Hagiwara et al., 2018; Hertanu et al., 2022Does not require a special scan for derivation. Better specificity to myelin than regular T1, T2 parameters (Parent et al., 2023). Not wholly specific to myelin. 
MTw parameters (MTR, MPF (Kisel et al., 2022), ihMT (Girard et al., 2015), MTsat (Helms et al., 2008)) Magnetization Transfer-weighted imaging Myelin (Morris et al., 2023; Soustelle et al., 2019The more recently developed parameters, including MPF and ihMT, are highly specific to myelin. The classic MTR derivation is somewhat non-specific, with sensitivity to water content and axonal density (Hagiwara et al., 2018; Vavasour et al., 2011). More recent parameters have been largely restricted to the experimental imaging literature, with less clinical application 
MWF T2 relaxometry Myelin (Laule & Moore, 2018Good dynamic range, and lower sensitivity to axonal directionality (Morris et al., 2023). Has a worse correlation with ground-truth myelin (as measured with myelin basic protein staining in a mouse model) than MPF (Soustelle et al., 2019). 
DTI parameters (FA, MD, RD, AxD) Diffusion scan: minimum 1 b-value, six directions but preferably more (Lebel et al., 2012; K. G. Schilling et al., 2017Myelination, axonal integrity, somatic density, neurite density (Galbusera et al., 2023; Gulani et al., 2001; Jones et al., 2013Routine acquisition in research settings. One of the simplest diffusion acquisition paradigms, making it appealing for clinical applications. Extensive literature for comparison. Non-specific, both in terms of histological correspondance and disease involvement. 
Kurtosis Diffusion scan (minimum 2 b-values of roughly 1000 and 2000) Microstructural complexity (Jensen et al., 2005; E. X. Wu & Cheung, 2010Better specificity to structural changes in GM. Non-specific to nature of structural change (e.g., axonal changes, somatic changes). Traditional derivations may not be robust (Henriques et al., 2021). 
NODDI Diffusion scan: b-values of approximately 1000 and 2000 with 30–60 directions each (H. Zhang et al., 2012Intra-neurite, extra-neurite, and free water compartments (H. Zhang et al., 2012Better specificity to somatic vs. neurite structure in complex tissue Acquisition not available yet for many clinical contexts. Will not distinguish varying cell types with broadly similar structure (e.g., interneurons vs. glia) 
SANDI Diffusion scan: b-values of 1000, 3000, 5000, and 10,000, with 64–128 directions each (Palombo et al., 2020Intra-neurite, intra-somatic, extra-somatic, free water (Palombo et al., 2020Intra- and extra-somatic compartments allow quantification of cellular changes. Highly involved acquisition is currently inaccessible to most studies, especially clinical. 
Susceptibility-weighted parameters (R2*, χ, χ-separation (Shin et al., 2021)) Susceptibility-weighted imaging/quantitative susceptibility mapping (Ruetten et al., 2019Myelin, iron Well-validated, widely used acquisitions, with good specificity. Able to seperate iron and myelin (paramagnetic and diamagnetic strictly speaking) contributions to signal. Not routinely acquired for clinical studies. 
Proton Density Proton density-weighted imaging (Mezer et al., 2016Apparent water concentration, inverse of lipid and macromolecular density Well-validated, alternative measure of lipid density Not routinely acquired for clinical studies. 
Table 4.

Table of abbreviations.

AbbreviationDefinition
ACT anatomically constrained tractography 
AxD axial diffusivity 
ASD autism spectrum disorder 
AD Alzheimer’s disease 
BOLD blood oxygen level dependent 
dMRI diffusion magnetic resonance imaging 
DTI diffusion tensor imaging 
DWM deep white matter 
FA fractional anisotropy 
FAT frontal aslant tract 
fMRI functional magnetic resonance imaging 
FOD fibre orientation distribution 
FTLD fronto-temporal lobar degeneration 
GMWMI grey matter–white matter interface 
MAF medium association fibre 
MD mean diffusivity 
MTR magnetization transfer ratio 
MWF myelin water fraction 
NADPHd nicotinamide adenine dinucleotide phosphate diaphorase 
NDI neurite density index 
NODDI neurite orientation dispersion and density imaging 
ODI orientation dispersion index 
PFC pre-frontal cortex 
QSM quantitative susceptibility mapping 
RD radial diffusivity 
SAF short association fibre 
SANDI soma and neurite density imaging 
SFG superior frontal gyrus 
SWM superficial white matter 
TBSS tract-based spatial statistics 
WMIN white matter interstitial neuron 
AbbreviationDefinition
ACT anatomically constrained tractography 
AxD axial diffusivity 
ASD autism spectrum disorder 
AD Alzheimer’s disease 
BOLD blood oxygen level dependent 
dMRI diffusion magnetic resonance imaging 
DTI diffusion tensor imaging 
DWM deep white matter 
FA fractional anisotropy 
FAT frontal aslant tract 
fMRI functional magnetic resonance imaging 
FOD fibre orientation distribution 
FTLD fronto-temporal lobar degeneration 
GMWMI grey matter–white matter interface 
MAF medium association fibre 
MD mean diffusivity 
MTR magnetization transfer ratio 
MWF myelin water fraction 
NADPHd nicotinamide adenine dinucleotide phosphate diaphorase 
NDI neurite density index 
NODDI neurite orientation dispersion and density imaging 
ODI orientation dispersion index 
PFC pre-frontal cortex 
QSM quantitative susceptibility mapping 
RD radial diffusivity 
SAF short association fibre 
SANDI soma and neurite density imaging 
SFG superior frontal gyrus 
SWM superficial white matter 
TBSS tract-based spatial statistics 
WMIN white matter interstitial neuron 

Investigation of the SWM thus far has given a reasonably complete understanding of its anatomy, especially of fascicles reproducible across subjects. We also have early prototypes for techniques to capture individual bundle variations; we expect these protocols to be a major focus of upcoming research. As the number of SWM atlases begins to proliferate, it will be important to find common reference systems for labelling and annotating SAFs (Wassermann et al., 2013). Thus far, atlas makers have generally annotated their SAFs based on the bundle termination points (Guevara et al., 2020); this has the advantage of clarity and easy extensibility. This convention is not used throughout the entire literature however (e.g., “Op_SF_0i” from Román et al. (2017) corresponds to part of the FAT). Researchers must thus be aware that atlas tracts may elsewhere be referred to by “irregular” names.

The gestational and neonatal development of the SWM has been extensively characterized with histological and neuroimaging analysis. Development across the rest of the lifespan is much more opaque. Several large imaging studies provide us with reference values for the basic diffusion parameters, including FA, MD, RD, and AxD (Pietrasik et al., 2023; K. G. Schilling, Archer, Yeh, et al., 2023). These values, however, are non-specific, giving little insight into cellular and molecular processes occurring across development. Deviation of these values, as seen in disease, also cannot be transparently interpreted.

Because of this, the use of basic imaging methods in exploratory studies isolated from any histological context is unlikely to yield productive knowledge. However, we do not hold such imaging, with its unmatched subject throughput, non-invasive applicability across human populations, and comparability to behavioural measures, to be without any merit whatsoever. Instead, we suggest neuroimaging should, as much as possible, be conducted and interpreted in the immediate context of ex vivo histological study. The work of Kirilina et al. (2020) exemplifies this approach: they used a combination of histochemical microscopy and ex vivo MRI to develop a model relating R2* to iron levels and myelin fraction in quantitative MRI from young, healthy controls. In another example, not related to the SWM, Galbusera et al. (2023) correlated diffusivity metrics with histologically stained myelin in multiple sclerosis lesions, finding a surprisingly high negative correlation between myelin levels and AxD. Such careful analysis should be conducted more generally, for instance, to confirm a link between reduced FA and increased WMIN density in schizophrenia, or to study the correspondence in AD between reduced FA and A β plaques. This could transform standard, non-specific MR parameters into meaningful markers of disease phenotypes. Since many neuropsychiatric syndromes lack localized “lesions” but very likely involve a generalized neuronal functional deficit, a histologically informed understanding of SWM dysfunction holds a distinct promise of understanding their pathophysiology. A recent review by Alkemade et al. (2023) discusses this in more detail.

Finally, future work should attempt to clarify an operational definition for the SWM. Specific study of this layer is predicated on its unique structural and cellular characteristics, distinctions rendered meaningless if it cannot be reliably delineated. To fully account for the region’s developmental history and the confluence of cells and vessels it contains, the validity of operational definitions should be empirically tested using converging methods such as gene expression analysis, single-cell transcriptome analysis aimed at WMINs, and imaging studies focused on myelin, iron, and diffusivity (Jung & Kim, 2023). Since the width of the region may be narrower than common dMRI acquisitions (0.5–2 mm vs. the common 2 mm isotropic resolution), imaging studies should acknowledge this limitation and seek higher resolution whenever possible. The effect of resolution on SAF clustering should also be explored; the thickness of SAFs on a high-resolution image would provide a good heuristic for the resolution required for accurate SAF retrieval, especially for protocols sampling parameter values along the streamlines.

No novel code or data was used in the production of this manuscript.

P.C.V.D.: Conceptualization, Investigation, Writing—Original Draft, A.R.K.: Supervision, Writing—Review and Editing, L.P.: Supervision, Writing—Review and Editing.

No ethics submission was required for this review.

P.C.V.D. acknowledges research support from the Canadian Institute of Health Research via the Canadian Graduate Scholarships Doctoral Award, and from Physicians Services Incorporated via a Research Trainee Award.

A.R.K. acknowledges research support from the Canada Research Chairs program #950-231964, NSERC Discovery Grant #6639, the Canada Foundation for Innovation (CFI) John R. Evans Leaders Fund project #37427, the Canada First Research Excellence Fund, and a Platform Support Grant from Brain Canada for the Centre for Functional and Metabolic Mapping.

L.P. acknowledges research support from the Canada First Research Excellence Fund, awarded to the Healthy Brains, Healthy Lives initiative at McGill University (through New Investigator Supplement to L.P.); Monique H. Bourgeois Chair in Developmental Disorders and Graham Boeckh Foundation (Douglas Research Centre, McGill University) and a salary award from the Fonds de recherche du Quebec-Santé (FRQS).

P.C.V.D. reports no conflicts of interest. A.R.K. reports no conflicts of interest. L.P. reports personal fees for serving as chief editor from the Canadian Medical Association Journals, speaker/consultant fee from Janssen Canada and Otsuka Canada, SPMM Course Limited, UK, Canadian Psychiatric Association; book royalties from Oxford University Press; investigator-initiated educational grants from Janssen Canada, Sunovion and Otsuka Canada outside the submitted work.

Special thanks to Brad Karat for helpful discussion of advanced diffusion models, and to Jason Kai for his comments on the manuscript.

Abdolalizadeh
,
A.
,
Mohammadi
,
S.
, &
Aarabi
,
M. H.
(
2022
).
The forgotten tract of vision in multiple sclerosis: Vertical occipital fasciculus, its fiber properties, and visuospatial memory
.
Brain Structure and Function
,
227
(
4
),
1479
1490
. https://doi.org/10.1007/s00429-022-02464-3
Agrawal
,
A.
,
Kapfhammer
,
J. P.
,
Kress
,
A.
,
Wichers
,
H.
,
Deep
,
A.
,
Feindel
,
W.
,
Sonntag
,
V. K. H.
,
Spetzler
,
R. F.
, &
Preul
,
M. C.
(
2011
).
Josef Klingler’s models of white matter tracts: Influences on neuroanatomy, neurosurgery, and neuroimaging
.
Neurosurgery
,
69
(
2
),
238
. https://doi.org/10.1227/NEU.0b013e318214ab79
Alexander
,
D. C.
,
Dyrby
,
T. B.
,
Nilsson
,
M.
, &
Zhang
,
H.
(
2019
).
Imaging brain microstructure with diffusion MRI: Practicality and applications
.
NMR in Biomedicine
,
32
(
4
),
e3841
. https://doi.org/10.1002/nbm.3841
Alkemade
,
A.
,
Großmann
,
R.
,
Bazin
,
P.-L.
, &
Forstmann
,
B. U.
(
2023
).
Mixed methodology in human brain research: Integrating MRI and histology
.
Brain Structure and Function
,
228
(
6
),
1399
1410
. https://doi.org/10.1007/s00429-023-02675-2
Anjari
,
M.
,
Srinivasan
,
L.
,
Allsop
,
J. M.
,
Hajnal
,
J. V.
,
Rutherford
,
M. A.
,
Edwards
,
A. D.
, &
Counsell
,
S. J.
(
2007
).
Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants
.
NeuroImage
,
35
(
3
),
1021
1027
. https://doi.org/10.1016/j.neuroimage.2007.01.035
Arshad
,
M.
,
Stanley
,
J. A.
, &
Raz
,
N.
(
2017
).
Test–retest reliability and concurrent validity of in vivo myelin content indices: Myelin water fraction and calibrated T1w/T2w image ratio
.
Human Brain Mapping
,
38
(
4
),
1780
1790
. https://doi.org/10.1002/hbm.23481
Bagnato
,
F.
,
Hametner
,
S.
,
Yao
,
B.
,
van Gelderen
,
P.
,
Merkle
,
H.
,
Cantor
,
F. K.
,
Lassmann
,
H.
, &
Duyn
,
J. H.
(
2011
).
Tracking iron in multiple sclerosis: A combined imaging and histopathological study at 7 Tesla
.
Brain
,
134
(
12
),
3599
3612
. https://doi.org/10.1093/brain/awr278
Baker
,
M.
,
Mackenzie
,
I. R.
,
Pickering-Brown
,
S. M.
,
Gass
,
J.
,
Rademakers
,
R.
,
Lindholm
,
C.
,
Snowden
,
J.
,
Adamson
,
J.
,
Sadovnick
,
A. D.
,
Rollinson
,
S.
,
Cannon
,
A.
,
Dwosh
,
E.
,
Neary
,
D.
,
Melquist
,
S.
,
Richardson
,
A.
,
Dickson
,
D.
,
Berger
,
Z.
,
Eriksen
,
J.
,
Robinson
,
T.
, …
Hutton
,
M
. (
2006
).
Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17
.
Nature
,
442
(
7105
),
916
919
. https://doi.org/10.1038/nature05016
Baydin
,
S.
,
Gungor
,
A.
,
Tanriover
,
N.
,
Baran
,
O.
,
Middlebrooks
,
E. H.
, &
Rhoton
,
A. L.
(
2017
).
Fiber tracts of the medial and inferior surfaces of the cerebrum
.
World Neurosurgery
,
98
,
34
49
. https://doi.org/10.1016/j.wneu.2016.05.016
Beck
,
D.
,
de Lange
,
A.-M. G.
,
Maximov
,
I. I.
,
Richard
,
G.
,
Andreassen
,
O. A.
,
Nordvik
,
J. E.
, &
Westlye
,
L. T.
(
2021
).
White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction
.
NeuroImage
,
224
,
117441
. https://doi.org/10.1016/j.neuroimage.2020.117441
Behrens
,
T. E. J.
,
Berg
,
H. J.
,
Jbabdi
,
S.
,
Rushworth
,
M. F. S.
, &
Woolrich
,
M. W.
(
2007
).
Probabilistic diffusion tractography with multiple fibre orientations: What can we gain
?
NeuroImage
,
34
(
1
),
144
155
. https://doi.org/10.1016/j.neuroimage.2006.09.018
Bender
,
A. R.
,
Völkle
,
M. C.
, &
Raz
,
N.
(
2016
).
Differential aging of cerebral white matter in middle-aged and older adults: A seven-year follow-up
.
NeuroImage
,
125
,
74
83
. https://doi.org/10.1016/j.neuroimage.2015.10.030
Bernstein
,
H.-G.
,
Jauch
,
E.
,
Dobrowolny
,
H.
,
Mawrin
,
C.
,
Steiner
,
J.
, &
Bogerts
,
B.
(
2016
).
Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia
.
European Archives of Psychiatry and Clinical Neuroscience
,
266
(
6
),
495
504
. https://doi.org/10.1007/s00406-015-0640-y
Bernstein
,
H.-G.
,
Smalla
,
K.-H.
,
Dürrschmidt
,
D.
,
Keilhoff
,
G.
,
Dobrowolny
,
H.
,
Steiner
,
J.
,
Schmitt
,
A.
,
Kreutz
,
M. R.
, &
Bogerts
,
B.
(
2012
).
Increased density of prohibitin-immunoreactive oligodendrocytes in the dorsolateral prefrontal white matter of subjects with schizophrenia suggests extraneuronal roles for the protein in the disease
.
Neuromolecular Medicine
,
14
(
4
),
270
280
. https://doi.org/10.1007/s12017-012-8185-y
Beyh
,
A.
,
Dell’Acqua
,
F.
,
Cancemi
,
D.
,
Requejo
De Santiago
, F.,
Ffytche
,
D.
, &
Catani
,
M.
(
2022
).
The medial occipital longitudinal tract supports early stage encoding of visuospatial information
.
Communications Biology
,
5
(
1
),
1
10
. https://doi.org/10.1038/s42003-022-03265-4
Bigham
,
B.
,
Zamanpour
,
S. A.
,
Zemorshidi
,
F.
,
Boroumand
,
F.
, &
Zare
,
H.
(
2020
).
Identification of superficial white matter abnormalities in Alzheimer’s disease and mild cognitive impairment using diffusion tensor imaging
.
Journal of Alzheimer’s Disease Reports
,
4
(
1
),
49
59
. https://doi.org/10.3233/ADR-190149
Bihan
,
D. L.
, &
Iima
,
M.
(
2015
).
Diffusion magnetic resonance imaging: What water tells us about biological tissues
.
PLoS Biology
,
13
(
7
),
e1002203
. https://doi.org/10.1371/journal.pbio.1002203
Bletsch
,
A.
,
Schäfer
,
T.
,
Mann
,
C.
,
Andrews
,
D. S.
,
Daly
,
E.
,
Gudbrandsen
,
M.
,
Ruigrok
,
A. N. V.
,
Dallyn
,
R.
,
Romero-Garcia
,
R.
,
Lai
,
M.-C.
,
Lombardo
,
M. V.
,
Craig
,
M. C.
,
Suckling
,
J.
,
Bullmore
,
E. T.
,
Baron-Cohen
,
S.
,
MRC AIMS Consortium
,
Murphy
,
D. G. M.
,
Dell’Acqua
,
F.
, &
Ecker
,
C.
(
2021
).
Atypical measures of diffusion at the gray-white matter boundary in autism spectrum disorder in adulthood
.
Human Brain Mapping
,
42
(
2
),
467
484
. https://doi.org/10.1002/hbm.25237
Bodin
,
C.
,
Pron
,
A.
,
Le Mao
,
M.
,
Régis
,
J.
,
Belin
,
P.
, &
Coulon
,
O.
(
2021
).
Plis de passage in the superior temporal sulcus: Morphology and local connectivity
.
NeuroImage
,
225
,
117513
. https://doi.org/10.1016/j.neuroimage.2020.117513
Borst
,
K.
,
Dumas
,
A. A.
, &
Prinz
,
M.
(
2021
).
Microglia: Immune and non-immune functions
.
Immunity
,
54
(
10
),
2194
2208
. https://doi.org/10.1016/j.immuni.2021.09.014
Bozkurt
,
B.
,
Yagmurlu
,
K.
,
Middlebrooks
,
E. H.
,
Cayci
,
Z.
,
Cevik
,
O. M.
,
Karadag
,
A.
,
Moen
,
S.
,
Tanriover
,
N.
, &
Grande
,
A. W.
(
2017
).
Fiber connections of the supplementary motor area revisited: Methodology of fiber dissection, DTI, and three dimensional documentation
.
Journal of Visualized Experiments: JoVE
,
123
,
55681
. https://doi.org/10.3791/55681
Bozkurt
,
B.
,
Yagmurlu
,
K.
,
Middlebrooks
,
E. H.
,
Karadag
,
A.
,
Ovalioglu
,
T. C.
,
Jagadeesan
,
B.
,
Sandhu
,
G.
,
Tanriover
,
N.
, &
Grande
,
A. W.
(
2016
).
Microsurgical and tractographic anatomy of the supplementary motor area complex in humans
.
World Neurosurgery
,
95
,
99
107
. https://doi.org/10.1016/j.wneu.2016.07.072
Briggs
,
R. G.
,
Chakraborty
,
A. R.
,
Anderson
,
C. D.
,
Abraham
,
C. J.
,
Palejwala
,
A. H.
,
Conner
,
A. K.
,
Pelargos
,
P. E.
,
O’Donoghue
,
D. L.
,
Glenn
,
C. A.
, &
Sughrue
,
M. E.
(
2019
).
Anatomy and white matter connections of the inferior frontal gyrus
.
Clinical Anatomy
,
32
(
4
),
546
556
. https://doi.org/10.1002/ca.23349
Briggs
,
R. G.
,
Lin
,
Y.-H.
,
Dadario
,
N. B.
,
Kim
,
S. J.
,
Young
,
I. M.
,
Bai
,
M. Y.
,
Dhanaraj
,
V.
,
Fonseka
,
R. D.
,
Hormovas
,
J.
,
Tanglay
,
O.
,
Chakraborty
,
A. R.
,
Milligan
,
T. M.
,
Abraham
,
C. J.
,
Anderson
,
C. D.
,
Palejwala
,
A. H.
,
Conner
,
A. K.
,
O’Donoghue
,
D. L.
, &
Sughrue
,
M. E.
(
2021
).
Anatomy and white matter connections of the middle frontal gyrus
.
World Neurosurgery
,
150
,
e520
e529
. https://doi.org/10.1016/j.wneu.2021.03.045
Bugain
,
M.
,
Dimech
,
Y.
,
Torzhenskaya
,
N.
,
Thiebaut de Schotten
,
M.
,
Caspers
,
S.
,
Muscat
,
R.
, &
Bajada
,
C. J.
(
2021
).
Occipital Intralobar fasciculi: A description, through tractography, of three forgotten tracts
.
Communications Biology
,
4
(
1
),
1
11
. https://doi.org/10.1038/s42003-021-01935-3
Bullock
,
D.
,
Takemura
,
H.
,
Caiafa
,
C. F.
,
Kitchell
,
L.
,
McPherson
,
B.
,
Caron
,
B.
, &
Pestilli
,
F.
(
2019
).
Associative white matter connecting the dorsal and ventral posterior human cortex
.
Brain Structure and Function
,
224
(
8
),
2631
2660
. https://doi.org/10.1007/s00429-019-01907-8
Burkhalter
,
A.
,
Bernardo
,
K. L.
, &
Charles
,
V.
(
1993
).
Development of local circuits in human visual cortex
.
Journal of Neuroscience
,
13
(
5
),
1916
1931
. https://doi.org/10.1523/JNEUROSCI.13-05-01916.1993
Burks
,
J. D.
,
Boettcher
,
L. B.
,
Conner
,
A. K.
,
Glenn
,
C. A.
,
Bonney
,
P. A.
,
Baker
,
C. M.
,
Briggs
,
R. G.
,
Pittman
,
N. A.
,
O’Donoghue
,
D. L.
,
Wu
,
D. H.
, &
Sughrue
,
M. E.
(
2017
).
White matter connections of the inferior parietal lobule: A study of surgical anatomy
.
Brain and Behavior
,
7
(
4
),
e00640
. https://doi.org/10.1002/brb3.640
Butt
,
A. M.
, &
Berry
,
M.
(
2000
).
Oligodendrocytes and the control of myelination in vivo: New insights from the rat anterior medullary velum
.
Journal of Neuroscience Research
,
59
(
4
),
477
488
. https://doi.org/10.1002/(SICI)1097-4547(20000215)59:4<477::AID-JNR2>3.0.CO;2-J
Butt
,
A. M.
,
Fern
,
R. F.
, &
Matute
,
C.
(
2014
).
Neurotransmitter signaling in white matter
.
Glia
,
62
(
11
),
1762
1779
. https://doi.org/10.1002/glia.22674
Buyukturkoglu
,
K.
,
Vergara
,
C.
,
Fuentealba
,
V.
,
Tozlu
,
C.
,
Dahan
,
J. B.
,
Carroll
,
B. E.
,
Kuceyeski
,
A.
,
Riley
,
C. S.
,
Sumowski
,
J. F.
,
Oliva
,
C. G.
,
Sitaram
,
R.
,
Guevara
,
P.
, &
Leavitt
,
V. M.
(
2022
).
Machine learning to investigate superficial white matter integrity in early multiple sclerosis
.
Journal of Neuroimaging
,
32
(
1
),
36
47
. https://doi.org/10.1111/jon.12934
Carmeli
,
C.
,
Fornari
,
E.
,
Jalili
,
M.
,
Meuli
,
R.
, &
Knyazeva
,
M. G.
(
2014
).
Structural covariance of superficial white matter in mild Alzheimer’s disease compared to normal aging
.
Brain and Behavior
,
4
(
5
),
721
737
. https://doi.org/10.1002/brb3.252
Caroppo
,
P.
,
Le Ber
,
I.
,
Camuzat
,
A.
,
Clot
,
F.
,
Naccache
,
L.
,
Lamari
,
F.
,
De Septenville
,
A.
,
Bertrand
,
A.
,
Belliard
,
S.
,
Hannequin
,
D.
,
Colliot
,
O.
, &
Brice
,
A.
(
2014
).
Extensive white matter involvement in patients with frontotemporal lobar degeneration: Think progranulin
.
JAMA Neurology
,
71
(
12
),
1562
1566
. https://doi.org/10.1001/jamaneurol.2014.1316
Carrel
,
D.
,
Hernandez
,
K.
,
Kwon
,
M.
,
Mau
,
C.
,
Trivedi
,
M. P.
,
Brzustowicz
,
L. M.
, &
Firestein
,
B. L.
(
2015
).
Nitric oxide synthase 1 adaptor protein, a protein implicated in schizophrenia, controls radial migration of cortical neurons
.
Biological Psychiatry
,
77
(
11
),
969
978
. https://doi.org/10.1016/j.biopsych.2014.10.016
Catani
,
M.
(
2022
).
Chapter 1: The connectional anatomy of the temporal lobe
. In
G.
Miceli
,
P.
Bartolomeo
, &
V.
Navarro
(Eds.),
Handbook of clinical neurology
(Vol.
187
, pp.
3
16
).
Elsevier
. https://doi.org/10.1016/B978-0-12-823493-8.00001-8
Catani
,
M.
,
Dell’acqua
,
F.
,
Vergani
,
F.
,
Malik
,
F.
,
Hodge
,
H.
,
Roy
,
P.
,
Valabregue
,
R.
, &
de Schotten
,
M. T
. (
2012
).
Short frontal lobe connections of the human brain
.
Cortex; A Journal Devoted to the Study of the Nervous System and Behavior
,
48
(
2
),
273
291
. https://doi.org/10/fbrb8z
Catani
,
M.
,
Mesulam
,
M. M.
,
Jakobsen
,
E.
,
Malik
,
F.
,
Martersteck
,
A.
,
Wieneke
,
C.
,
Thompson
,
C. K.
,
Thiebaut de Schotten
,
M.
,
Dell’Acqua
,
F.
,
Weintraub
,
S.
, &
Rogalski
,
E.
(
2013
).
A novel frontal pathway underlies verbal fluency in primary progressive aphasia
.
Brain
,
136
(
8
),
2619
2628
. https://doi.org/10.1093/brain/awt163
Catani
,
M.
,
Robertsson
,
N.
,
Beyh
,
A.
,
Huynh
,
V.
,
Requejo
de Santiago
, F.,
Howells
,
H.
,
Barrett
,
R. L. C.
,
Aiello
,
M.
,
Cavaliere
,
C.
,
Dyrby
,
T. B.
,
Krug
,
K.
,
Ptito
,
M.
,
D’Arceuil
,
H.
,
Forkel
,
S. J.
, &
Dell’Acqua
,
F.
(
2017
).
Short parietal lobe connections of the human and monkey brain
.
Cortex
,
97
,
339
357
. https://doi.org/10.1016/j.cortex.2017.10.022
Catena Baudo
,
M.
,
Villamil
,
F.
,
Paolinelli
,
P. S.
,
Domenech
,
N. C.
,
Cervio
,
A.
,
Ferrara
,
L. A.
, &
Bendersky
,
M.
(
2023
).
Frontal aslant tract and its role in language: A journey through tractographies and dissections
.
World Neurosurgery
,
173
,
e738
e747
. https://doi.org/10.1016/j.wneu.2023.02.145
Chun
,
J. J. M.
, &
Shatz
,
C. J.
(
1989
).
Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population
.
Journal of Comparative Neurology
,
282
(
4
),
555
569
. https://doi.org/10.1002/cne.902820407
Clancy
,
B.
,
Silva-Filho
,
M.
, &
Friedlander
,
M. J.
(
2001
).
Structure and projections of white matter neurons in the postnatal rat visual cortex
.
Journal of Comparative Neurology
,
434
(
2
),
233
252
. https://doi.org/10.1002/cne.1174
Cole
,
M.
,
Murray
,
K.
,
St-Onge
,
E.
,
Risk
,
B.
,
Zhong
,
J.
,
Schifitto
,
G.
,
Descoteaux
,
M.
, &
Zhang
,
Z.
(
2021
).
Surface-based Connectivity Integration: An atlas-free approach to jointly study functional and structural connectivity
.
Human Brain Mapping
,
42
(
11
),
3481
3499
. https://doi.org/10/gjwmpk
Colombo
,
J. A.
(
2018
).
Cellular complexity in subcortical white matter: A distributed control circuit
?
Brain Structure and Function
,
223
(
2
),
981
985
. https://doi.org/10.1007/s00429-018-1609-1
Connor
,
C. M.
,
Guo
,
Y.
, &
Akbarian
,
S.
(
2009
).
Cingulate white matter neurons in schizophrenia and bipolar disorder
.
Biological Psychiatry
,
66
(
5
),
486
493
. https://doi.org/10.1016/j.biopsych.2009.04.032
Connor
,
J. R.
, &
Menzies
,
S. L.
(
1996
).
Relationship of iron to oligondendrocytes and myelination
.
Glia
,
17
(
2
),
83
93
. https://doi.org/10.1002/(SICI)1098-1136(199606)17:2<83::AID-GLIA1>3.0.CO;2-7
Contarino
,
V. E.
,
Siggillino
,
S.
,
Arighi
,
A.
,
Scola
,
E.
,
Fumagalli
,
G. G.
,
Conte
,
G.
,
Rotondo
,
E.
,
Galimberti
,
D.
,
Pietroboni
,
A. M.
,
Carandini
,
T.
,
Leemans
,
A.
,
Bianchi
,
A. M.
, &
Triulzi
,
F. M.
(
2022
).
Association of superficial white matter alterations with cerebrospinal fluid biomarkers and cognitive decline in neurodegenerative dementia
.
Journal of Alzheimer’s Disease
,
85
(
1
),
431
442
. https://doi.org/10.3233/JAD-215003
Corrigan
,
N. M.
,
Yarnykh
,
V. L.
,
Hippe
,
D. S.
,
Owen
,
J. P.
,
Huber
,
E.
,
Zhao
,
T. C.
, &
Kuhl
,
P. K.
(
2021
).
Myelin development in cerebral gray and white matter during adolescence and late childhood
.
NeuroImage
,
227
,
117678
. https://doi.org/10.1016/j.neuroimage.2020.117678
Cottaar
,
M.
,
Bastiani
,
M.
,
Chen
,
C.
,
Dikranian
,
K.
,
Van Essen
,
D.
,
Behrens
,
T. E.
,
Sotiropoulos
,
S. N.
, &
Jbabdi
,
S.
(
2018
).
A gyral coordinate system predictive of fibre orientations
.
NeuroImage
,
176
,
417
430
. https://doi.org/10.1016/j.neuroimage.2018.04.040
Counsell
,
S. J.
,
Maalouf
,
E. F.
,
Fletcher
,
A. M.
,
Duggan
,
P.
,
Battin
,
M.
,
Lewis
,
H. J.
,
Herlihy
,
A. H.
,
Edwards
,
A. D.
,
Bydder
,
G. M.
, &
Rutherford
,
M. A.
(
2002
).
MR imaging assessment of myelination in the very preterm brain
.
American Journal of Neuroradiology
,
23
(
5
),
872
881
. https://www.ajnr.org/content/23/5/872
d’Albis
,
M.-A.
,
Guevara
,
P.
,
Guevara
,
M.
,
Laidi
,
C.
,
Boisgontier
,
J.
,
Sarrazin
,
S.
,
Duclap
,
D.
,
Delorme
,
R.
,
Bolognani
,
F.
,
Czech
,
C.
,
Bouquet
,
C.
,
Ly-Le Moal
,
M.
,
Holiga
,
S.
,
Amestoy
,
A.
,
Scheid
,
I.
,
Gaman
,
A.
,
Leboyer
,
M.
,
Poupon
,
C.
,
Mangin
,
J.-F.
, &
Houenou
,
J.
(
2018
).
Local structural connectivity is associated with social cognition in autism spectrum disorder
.
Brain: A Journal of Neurology
,
141
(
12
),
3472
3481
. https://doi.org/10.1093/brain/awy275
Dannhoff
,
G.
,
Morichon
,
A.
,
Smirnov
,
M.
,
Barantin
,
L.
,
Destrieux
,
C.
, &
Maldonado
,
I. L.
(
2024
).
Direct inside-out observation of superficial white matter fasciculi in the human brain
.
Brain Connectivity
,
14
(
2
),
107
121
. https://doi.org/10.1089/brain.2023.0050
David
,
S.
,
Heemskerk
,
A. M.
,
Corrivetti
,
F.
,
Thiebaut de Schotten
,
M.
,
Sarubbo
,
S.
,
Corsini
,
F.
,
De Benedictis
,
A.
,
Petit
,
L.
,
Viergever
,
M. A.
,
Jones
,
D. K.
,
Mandonnet
,
E.
,
Axer
,
H.
,
Evans
,
J.
,
Paus
,
T.
, &
Leemans
,
A.
(
2019
).
The superoanterior fasciculus (SAF): A novel white matter pathway in the human brain
?
Frontiers in Neuroanatomy
,
13
,
24
. https://doi.org/10.3389/fnana.2019.00024
Del Campo
,
N.
,
Phillips
,
O.
,
Ory-Magne
,
F.
,
Brefel-Courbon
,
C.
,
Galitzky
,
M.
,
Thalamas
,
C.
,
Narr
,
K. L.
,
Joshi
,
S.
,
Singh
,
M. K.
,
Péran
,
P.
,
Pavy-LeTraon
,
A.
, &
Rascol
,
O.
(
2021
).
Broad white matter impairment in multiple system atrophy
.
Human Brain Mapping
,
42
(
2
),
357
366
. https://doi.org/10.1002/hbm.25227
Deng
,
F.
,
Zhao
,
L.
,
Liu
,
C.
,
Lu
,
M.
,
Zhang
,
S.
,
Huang
,
H.
,
Chen
,
L.
,
Wu
,
X.
,
Niu
,
C.
,
He
,
Y.
,
Wang
,
J.
, &
Huang
,
R.
(
2018
).
Plasticity in deep and superficial white matter: A DTI study in world class gymnasts
.
Brain Structure & Function
,
223
(
4
),
1849
1862
. https://doi.org/10.1007/s00429-017-1594-9
Ding
,
Z.
,
Newton
,
A. T.
,
Xu
,
R.
,
Anderson
,
A. W.
,
Morgan
,
V. L.
, &
Gore
,
J. C.
(
2013
).
Spatio-temporal correlation tensors reveal functional structure in human brain
.
PLoS One
,
8
(
12
),
e82107
. https://doi.org/10.1371/journal.pone.0082107
Ding
,
Z.
,
Xu
,
R.
,
Bailey
,
S. K.
,
Wu
,
T.-L.
,
Morgan
,
V. L.
,
Cutting
,
L. E.
,
Anderson
,
A. W.
, &
Gore
,
J. C.
(
2016
).
Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging
.
Magnetic Resonance Imaging
,
34
(
1
),
8
17
. https://doi.org/10.1016/j.mri.2015.10.003
Domínguez-Vivero
,
C.
,
Wu
,
L.
,
Lee
,
S.
,
Manoochehri
,
M.
,
Cines
,
S.
,
Brickman
,
A. M.
,
Rizvi
,
B.
,
Chesebro
,
A.
,
Gazes
,
Y.
,
Fallon
,
E.
,
Lynch
,
T.
,
Heidebrink
,
J. L.
,
Paulson
,
H.
,
Goldman
,
J. S.
,
Huey
,
E.
, &
Cosentino
,
S.
(
2020
).
Structural brain changes in pre-clinical FTD MAPT mutation carriers
.
Journal of Alzheimer’s Disease
,
75
(
2
),
595
606
. https://doi.org/10.3233/JAD-190820
Dubois
,
J.
,
Dehaene-Lambertz
,
G.
,
Kulikova
,
S.
,
Poupon
,
C.
,
Hüppi
,
P. S.
, &
Hertz-Pannier
,
L.
(
2014
).
The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants
.
Neuroscience
,
276
,
48
71
. https://doi.org/10.1016/j.neuroscience.2013.12.044
Duchatel
,
R. J.
,
Weickert
Shannon
,
C.
, &
Tooney
,
P. A.
(
2019
).
White matter neuron biology and neuropathology in schizophrenia
.
NPJ Schizophrenia
,
5
(
1
),
10
. https://doi.org/10.1038/s41537-019-0078-8
Duque
,
A.
,
Krsnik
,
Z.
,
Kostović
,
I.
, &
Rakic
,
P.
(
2016
).
Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates
.
Proceedings of the National Academy of Sciences of the United States of America
,
113
(
35
),
9892
9897
. https://doi.org/10.1073/pnas.1610078113
Dziedzic
,
T. A.
,
Balasa
,
A.
,
Jeżewski
,
M. P.
,
Michałowski
,
Ł.
, &
Marchel
,
A.
(
2021
).
White matter dissection with the Klingler technique: A literature review
.
Brain Structure and Function
,
226
(
1
),
13
47
. https://doi.org/10.1007/s00429-020-02157-9
Eastwood
,
S. L.
, &
Harrison
,
P. J.
(
2003
).
Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: Towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis
.
Molecular Psychiatry
,
8
(
9
),
821
831
. https://doi.org/10.1038/sj.mp.4001371
Eastwood
,
S. L.
, &
Harrison
,
P. J.
(
2005
).
Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia
.
Schizophrenia Research
,
79
(
2–3
),
181
188
. https://doi.org/10/d2d7gz
Epelbaum
,
S.
,
Pinel
,
P.
,
Gaillard
,
R.
,
Delmaire
,
C.
,
Perrin
,
M.
,
Dupont
,
S.
,
Dehaene
,
S.
, &
Cohen
,
L.
(
2008
).
Pure alexia as a disconnection syndrome: New diffusion imaging evidence for an old concept
.
Cortex
,
44
(
8
),
962
974
. https://doi.org/10.1016/j.cortex.2008.05.003
Essen
,
D. C. V.
(
1997
).
A tension-based theory of morphogenesis and compact wiring in the central nervous system
.
Nature
,
385
(
6614
),
313
318
. https://doi.org/10.1038/385313a0
Falcone
,
C.
,
McBride
,
E. L.
,
Hopkins
,
W. D.
,
Hof
,
P. R.
,
Manger
,
P. R.
,
Sherwood
,
C. C.
,
Noctor
,
S. C.
, &
Martínez-Cerdeño
,
V.
(
2022
).
Redefining varicose projection astrocytes in primates
.
Glia
,
70
(
1
),
145
154
. https://doi.org/10.1002/glia.24093
Fischer
,
H. C.
, &
Kuljis
,
R. O.
(
1994
).
Multiple types of nitrogen monoxide synthase-/NADPH diaphorase-containing neurons in the human cerebral neocortex
.
Brain Research
,
654
(
1
),
105
117
. https://doi.org/10.1016/0006-8993(94)91576-8
Fischl
,
B.
,
Sereno
,
M. I.
, &
Dale
,
A. M.
(
1999
).
Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system
.
NeuroImage
,
9
(
2
),
195
207
. https://doi.org/10.1006/nimg.1998.0396
Fornari
,
E.
,
Maeder
,
P.
,
Meuli
,
R.
,
Ghika
,
J.
, &
Knyazeva
,
M. G.
(
2012
).
Demyelination of superficial white matter in early Alzheimer’s disease: A magnetization transfer imaging study
.
Neurobiology of Aging
,
33
(
2
),
428.e7
428.e19
. https://doi.org/10.1016/j.neurobiolaging.2010.11.014
Fukunaga
,
M.
,
Li
,
T.-Q.
,
van Gelderen
,
P.
,
de Zwart
,
J. A.
,
Shmueli
,
K.
,
Yao
,
B.
,
Lee
,
J.
,
Maric
,
D.
,
Aronova
,
M. A.
,
Zhang
,
G.
,
Leapman
,
R. D.
,
Schenck
,
J. F.
,
Merkle
,
H.
,
Duyn
,
J. H.
, &
Ungerleider
,
L. G.
(
2010
).
Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast
.
Proceedings of the National Academy of Sciences of the United States of America
,
107
(
8
),
3834
3839
. https://doi.org/10.1073/pnas.0911177107
Gahm
,
J. K.
, &
Shi
,
Y.
(
2019
).
Surface-based tracking of U-fibers in the superficial white matter
. In
D.
Shen
,
T.
Liu
,
T. M.
Peters
,
L. H.
Staib
,
C.
Essert
,
S.
Zhou
,
P.-T.
Yap
, &
A.
Khan
(Eds.),
Medical image computing and computer assisted intervention: MICCAI 2019
(pp.
538
546
).
Springer International Publishing
. https://doi.org/10.1007/978-3-030-32248-9_60
Galbusera
,
R.
,
Bahn
,
E.
,
Weigel
,
M.
,
Schaedelin
,
S.
,
Franz
,
J.
,
Lu
,
P.-J.
,
Barakovic
,
M.
,
Melie-Garcia
,
L.
,
Dechent
,
P.
,
Lutti
,
A.
,
Sati
,
P.
,
Reich
,
D. S.
,
Nair
,
G.
,
Brück
,
W.
,
Kappos
,
L.
,
Stadelmann
,
C.
, &
Granziera
,
C.
(
2023
).
Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis
.
Brain Pathology
,
33
(
6
),
e13136
. https://doi.org/10.1111/bpa.13136
García-Marín
,
V.
,
Blazquez-Llorca
,
L.
,
Rodriguez
,
J.
,
Gonzalez-Soriano
,
J.
, &
DeFelipe
,
J.
(
2010
).
Differential distribution of neurons in the gyral white matter of the human cerebral cortex
.
Journal of Comparative Neurology
,
518
(
23
),
4740
4759
. https://doi.org/10.1002/cne.22485
Geng
,
X.
,
Gouttard
,
S.
,
Sharma
,
A.
,
Gu
,
H.
,
Styner
,
M.
,
Lin
,
W.
,
Gerig
,
G.
, &
Gilmore
,
J. H.
(
2012
).
Quantitative tract-based white matter development from birth to age 2 years
.
NeuroImage
,
61
(
3
),
542
557
. https://doi.org/10.1016/j.neuroimage.2012.03.057
Ghazi
,
N.
,
Aarabi
,
M. H.
, &
Soltanian-Zadeh
,
H.
(
2023
).
Deep learning methods for identification of white matter fiber tracts: Review of state-of-the-art and future prospective
.
Neuroinformatics
,
21
(
3
),
517
548
. https://doi.org/10.1007/s12021-023-09636-4
Giannini
,
L. A. A.
,
Peterson
,
C.
,
Ohm
,
D.
,
Xie
,
S. X.
,
McMillan
,
C. T.
,
Raskovsky
,
K.
,
Massimo
,
L.
,
Suh
,
E.
,
Van Deerlin
,
V. M.
,
Wolk
,
D. A.
,
Trojanowski
,
J. Q.
,
Lee
,
E. B.
,
Grossman
,
M.
, &
Irwin
,
D. J.
(
2021
).
Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology
.
Acta Neuropathologica Communications
,
9
(
1
),
30
. https://doi.org/10.1186/s40478-021-01129-2
Giannini
,
L. A.
,
Mol
,
M. O.
,
Rajicic
,
A.
,
van Buuren
,
R.
,
Sarkar
,
L.
,
Arezoumandan
,
S.
,
Ohm
,
D. T.
,
Irwin
,
D. J.
,
Rozemuller
,
A. J.
,
van Swieten
,
J. C.
,
Seelaar
,
H.
, &
Bank
,
N. B.
(
2023
).
Presymptomatic and early pathological features of MAPT-associated frontotemporal lobar degeneration
.
Acta Neuropathologica Communications
,
11
(
1
),
126
. https://doi.org/10.1186/s40478-023-01588-9
Girard
,
O. M.
,
Prevost
,
V. H.
,
Varma
,
G.
,
Cozzone
,
P. J.
,
Alsop
,
D. C.
, &
Duhamel
,
G.
(
2015
).
Magnetization transfer from inhomogeneously broadened lines (ihMT): Experimental optimization of saturation parameters for human brain imaging at 1.5 Tesla
.
Magnetic Resonance in Medicine
,
73
(
6
),
2111
2121
. https://doi.org/10.1002/mrm.25330
Glasser
,
M. F.
, &
Van Essen
,
D. C
. (
2011
).
Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI
.
The Journal of Neuroscience
,
31
(
32
),
11597
11616
. https://doi.org/10.1523/JNEUROSCI.2180-11.2011
Guevara
,
M.
,
Guevara
,
P.
,
Román
,
C.
, &
Mangin
,
J.-F.
(
2020
).
Superficial white matter: A review on the dMRI analysis methods and applications
.
NeuroImage
,
212
,
116673
. https://doi.org/10/ggwrzk
Guevara
,
M.
,
Román
,
C.
,
Houenou
,
J.
,
Duclap
,
D.
,
Poupon
,
C.
,
Mangin
,
J. F.
, &
Guevara
,
P.
(
2017
).
Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography
.
NeuroImage
,
147
,
703
725
. https://doi.org/10.1016/j.neuroimage.2016.11.066
Guevara
,
M.
,
Sun
,
Z.-Y.
,
Guevara
,
P.
,
Rivière
,
D.
,
Grigis
,
A.
,
Poupon
,
C.
, &
Mangin
,
J.-F.
(
2022
).
Disentangling the variability of the superficial white matter organization using regional-tractogram-based population stratification
.
NeuroImage
,
255
,
119197
. https://doi.org/10.1016/j.neuroimage.2022.119197
Gulani
,
V.
,
Webb
,
A.
,
Duncan
,
I.
, &
Lauterbur
,
P.
(
2001
).
Apparent diffusion tensor measurements in myelin-deficient rat spinal cords
.
Magnetic Resonance in Medicine
,
45
(
2
),
191
195
. https://doi.org/10.1002/1522-2594(200102)45:2<191::AID-MRM1025>3.0.CO;2-9
Hagiwara
,
A.
,
Fujimoto
,
K.
,
Kamagata
,
K.
,
Murata
,
S.
,
Irie
,
R.
,
Kaga
,
H.
,
Someya
,
Y.
,
Andica
,
C.
,
Fujita
,
S.
,
Kato
,
S.
,
Fukunaga
,
I.
,
Wada
,
A.
,
Hori
,
M.
,
Tamura
,
Y.
,
Kawamori
,
R.
,
Watada
,
H.
, &
Aoki
,
S.
(
2021
).
Age-related changes in relaxation times, proton density, myelin, and tissue volumes in adult brain analyzed by 2-dimensional quantitative synthetic magnetic resonance imaging
.
Investigative Radiology
,
56
(
3
),
163
. https://doi.org/10.1097/RLI.0000000000000720
Hagiwara
,
A.
,
Hori
,
M.
,
Kamagata
,
K.
,
Warntjes
,
M.
,
Matsuyoshi
,
D.
,
Nakazawa
,
M.
,
Ueda
,
R.
,
Andica
,
C.
,
Koshino
,
S.
,
Maekawa
,
T.
,
Irie
,
R.
,
Takamura
,
T.
,
Kumamaru
,
K. K.
,
Abe
,
O.
, &
Aoki
,
S.
(
2018
).
Myelin measurement: Comparison between simultaneous tissue relaxometry, magnetization transfer saturation index, and T1w/T2w ratio methods
.
Scientific Reports
,
8
(
1
),
10554
. https://doi.org/10.1038/s41598-018-28852-6
Halene
,
T. B.
,
Kozlenkov
,
A.
,
Jiang
,
Y.
,
Mitchell
,
A. C.
,
Javidfar
,
B.
,
Dincer
,
A.
,
Park
,
R.
,
Wiseman
,
J.
,
Croxson
,
P. L.
,
Giannaris
,
E. L.
,
Hof
,
P. R.
,
Roussos
,
P.
,
Dracheva
,
S.
,
Hemby
,
S. E.
, &
Akbarian
,
S.
(
2016
).
NeuN+ neuronal nuclei in non-human primate prefrontal cortex and subcortical white matter after clozapine exposure
.
Schizophrenia Research
,
170
(
2–3
),
235
244
. https://doi.org/10.1016/j.schres.2015.12.016
Haroutunian
,
V.
,
Katsel
,
P.
,
Roussos
,
P.
,
Davis
,
K. L.
,
Altshuler
,
L. L.
, &
Bartzokis
,
G.
(
2014
).
Myelination, oligodendrocytes, and serious mental illness
.
Glia
,
62
(
11
),
1856
1877
. https://doi.org/10.1002/glia.22716
He
,
J.
, &
Wang
,
Y.
(
2024
).
Superficial white matter microstructural imaging method based on time-space fractional-order diffusion
.
Physics in Medicine & Biology
,
69
(
6
),
065010
. https://doi.org/10.1088/1361-6560/ad2ca1
He
,
Z.
,
Han
,
D.
,
Efimova
,
O.
,
Guijarro
,
P.
,
Yu
,
Q.
,
Oleksiak
,
A.
,
Jiang
,
S.
,
Anokhin
,
K.
,
Velichkovsky
,
B.
,
Grünewald
,
S.
, &
Khaitovich
,
P.
(
2017
).
Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques
.
Nature Neuroscience
,
20
(
6
),
886
895
. https://doi.org/10.1038/nn.4548
Helms
,
G.
,
Dathe
,
H.
,
Kallenberg
,
K.
, &
Dechent
,
P.
(
2008
).
High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI
.
Magnetic Resonance in Medicine
,
60
(
6
),
1396
1407
. https://doi.org/10.1002/mrm.21732
Henriques
,
R. N.
,
Jespersen
,
S. N.
,
Jones
,
D. K.
, &
Veraart
,
J.
(
2021
).
Toward more robust and reproducible diffusion kurtosis imaging
.
Magnetic Resonance in Medicine
,
86
(
3
),
1600
1613
. https://doi.org/10.1002/mrm.28730
Hermoye
,
L.
,
Saint-Martin
,
C.
,
Cosnard
,
G.
,
Lee
,
S.-K.
,
Kim
,
J.
,
Nassogne
,
M.-C.
,
Menten
,
R.
,
Clapuyt
,
P.
,
Donohue
,
P. K.
,
Hua
,
K.
,
Wakana
,
S.
,
Jiang
,
H.
,
van Zijl
,
P. C. M.
, &
Mori
,
S.
(
2006
).
Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood
.
NeuroImage
,
29
(
2
),
493
504
. https://doi.org/10.1016/j.neuroimage.2005.08.017
Hertanu
,
A.
,
Soustelle
,
L.
,
Buron
,
J.
,
Le Priellec
,
J.
,
Cayre
,
M.
,
Le Troter
,
A.
,
Varma
,
G.
,
Alsop
,
D. C.
,
Durbec
,
P.
,
Girard
,
O. M.
, &
Duhamel
,
G.
(
2022
).
T1d-weighted ihMT imaging—Part II. Investigating the long- and short-T1D components correlation with myelin content. Comparison with R1 and the macromolecular proton fraction
.
Magnetic Resonance in Medicine
,
87
(
5
),
2329
2346
. https://doi.org/10.1002/mrm.29140
Hiji
,
M.
,
Takahashi
,
T.
,
Fukuba
,
H.
,
Yamashita
,
H.
,
Kohriyama
,
T.
, &
Matsumoto
,
M.
(
2008
).
White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin
.
Acta Neuropathologica
,
116
(
2
),
183
191
. https://doi.org/10.1007/s00401-008-0402-2
Holleran
,
L.
,
Kim
,
J. H.
,
Gangolli
,
M.
,
Stein
,
T.
,
Alvarez
,
V.
,
McKee
,
A.
, &
Brody
,
D. L.
(
2017
).
Axonal disruption in white matter underlying cortical sulcus tau pathology in chronic traumatic encephalopathy
.
Acta Neuropathologica
,
133
(
3
),
367
380
. https://doi.org/10.1007/s00401-017-1686-x
Huck
,
J.
,
Jäger
,
A.-T.
,
Schneider
,
U.
,
Grahl
,
S.
,
Fan
,
A. P.
,
Tardif
,
C.
,
Villringer
,
A.
,
Bazin
,
P.-L.
,
Steele
,
C. J.
, &
Gauthier
,
C. J.
(
2023
).
Modeling venous bias in resting state functional MRI metrics
.
Human Brain Mapping
,
44
(
14
),
4938
4955
. https://doi.org/10.1002/hbm.26431
Janelle
,
F.
,
Iorio-Morin
,
C.
,
D’amour
,
S.
, &
Fortin
,
D.
(
2022
).
Superior longitudinal fasciculus: A review of the anatomical descriptions with functional correlates
.
Frontiers in Neurology
,
13
,
794618
. https://doi.org/10.3389/fneur.2022.794618
Jbabdi
,
S.
, &
Johansen-Berg
,
H.
(
2011
).
Tractography: Where do we go from here
?
Brain Connectivity
,
1
(
3
),
169
183
. https://doi.org/10.1089/brain.2011.0033
Jbabdi
,
S.
,
Sotiropoulos
,
S. N.
,
Haber
,
S. N.
,
Van Essen
,
D. C.
, &
Behrens
,
T. E.
(
2015
).
Measuring macroscopic brain connections in vivo
.
Nature Neuroscience
,
18
(
11
),
1546
1555
. https://doi.org/10.1038/nn.4134
Jensen
,
J. H.
,
Helpern
,
J. A.
,
Ramani
,
A.
,
Lu
,
H.
, &
Kaczynski
,
K.
(
2005
).
Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging
.
Magnetic Resonance in Medicine
,
53
(
6
),
1432
1440
. https://doi.org/10.1002/mrm.20508
Jeurissen
,
B.
,
Leemans
,
A.
,
Tournier
,
J.-D.
,
Jones
,
D. K.
, &
Sijbers
,
J.
(
2013
).
Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging
.
Human Brain Mapping
,
34
(
11
),
2747
2766
. https://doi.org/10.1002/hbm.22099
Jeurissen
,
B.
,
Tournier
,
J.-D.
,
Dhollander
,
T.
,
Connelly
,
A.
, &
Sijbers
,
J.
(
2014
).
Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
.
NeuroImage
,
103
,
411
426
. https://doi.org/10.1016/j.neuroimage.2014.07.061
Ji
,
E.
,
Guevara
,
P.
,
Guevara
,
M.
,
Grigis
,
A.
,
Labra
,
N.
,
Sarrazin
,
S.
,
Hamdani
,
N.
,
Bellivier
,
F.
,
Delavest
,
M.
,
Leboyer
,
M.
,
Tamouza
,
R.
,
Poupon
,
C.
,
Mangin
,
J.-F.
, &
Houenou
,
J.
(
2019
).
Increased and decreased superficial white matter structural connectivity in schizophrenia and bipolar disorder
.
Schizophrenia Bulletin
,
45
(
6
),
1367
1378
. https://doi.org/10.1093/schbul/sbz015
Jiang
,
Y.
,
Luo
,
C.
,
Li
,
X.
,
Li
,
Y.
,
Yang
,
H.
,
Li
,
J.
,
Chang
,
X.
,
Li
,
H.
,
Yang
,
H.
,
Wang
,
J.
,
Duan
,
M.
, &
Yao
,
D.
(
2019
).
White-matter functional networks changes in patients with schizophrenia
.
NeuroImage
,
190
,
172
181
. https://doi.org/10.1016/j.neuroimage.2018.04.018
Jiang
,
Y.
,
Song
,
L.
,
Li
,
X.
,
Zhang
,
Y.
,
Chen
,
Y.
,
Jiang
,
S.
,
Hou
,
C.
,
Yao
,
D.
,
Wang
,
X.
, &
Luo
,
C.
(
2019
).
Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes
.
Human Brain Mapping
,
40
(
10
),
3113
3124
. https://doi.org/10.1002/hbm.24584
Jitsuishi
,
T.
,
Hirono
,
S.
,
Yamamoto
,
T.
,
Kitajo
,
K.
,
Iwadate
,
Y.
, &
Yamaguchi
,
A.
(
2020
).
White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex
.
Scientific Reports
,
10
(
1
),
820
. https://doi.org/10.1038/s41598-020-57837-7
Jones
,
D. K.
,
Knösche
,
T. R.
, &
Turner
,
R.
(
2013
).
White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI
.
NeuroImage
,
73
,
239
254
. https://doi.org/10.1016/j.neuroimage.2012.06.081
Joo
,
S. W.
,
Jo
,
Y. T.
,
Ahn
,
S.
,
Choi
,
Y. J.
,
Choi
,
W.
,
Kim
,
S. K.
,
Joe
,
S.
, &
Lee
,
J
. (
2023
).
Structural impairment in superficial and deep white matter in schizophrenia
.
Acta Neuropsychiatrica
,
1
10
. https://doi.org/10.1017/neu.2023.44
Joshi
,
D.
,
Fung
,
S. J.
,
Rothwell
,
A.
, &
Weickert
,
C. S.
(
2012
).
Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia
.
Biological Psychiatry
,
72
(
9
),
725
733
. https://doi.org/10.1016/j.biopsych.2012.06.021
Judaš
,
M.
,
Sedmak
,
G.
, &
Pletikos
,
M.
(
2010
).
Early history of subplate and interstitial neurons: From Theodor Meynert (1867) to the discovery of the subplate zone (1974)
.
Journal of Anatomy
,
217
(
4
),
344
367
. https://doi.org/10.1111/j.1469-7580.2010.01283.x
Judaš
,
M.
,
Sedmak
,
G.
,
Pletikos
,
M.
, &
Jovanov-Milošević
,
N.
(
2010
).
Populations of subplate and interstitial neurons in fetal and adult human telencephalon
.
Journal of Anatomy
,
217
(
4
),
381
399
. https://doi.org/10.1111/j.1469-7580.2010.01284.x
Judaš
,
M.
,
Šimić
,
G.
,
Petanjek
,
Z.
,
Jovanov-Milošević
,
N.
,
Pletikos
,
M.
,
Vasung
,
L.
,
Vukšić
,
M.
, &
Kostović
,
I.
(
2011
).
The Zagreb Collection of human brains: A unique, versatile, but underexploited resource for the neuroscience community
.
Annals of the New York Academy of Sciences
,
1225
(
S1
),
E105
E130
. https://doi.org/10.1111/j.1749-6632.2011.05993.x
Jung
,
N.
, &
Kim
,
T.-K.
(
2023
).
Spatial transcriptomics in neuroscience
.
Experimental & Molecular Medicine
,
55
(
10
),
2105
2115
. https://doi.org/10.1038/s12276-023-01093-y
Kai
,
J.
,
Khan
,
A. R.
,
Haast
,
R. A.
, &
Lau
,
J. C.
(
2022
).
Mapping the subcortical connectome using in vivo diffusion MRI: Feasibility and reliability
.
NeuroImage
,
262
,
119553
. https://doi.org/10.1016/j.neuroimage.2022.119553
Kai
,
J.
,
Mackinley
,
M.
,
Khan
,
A. R.
, &
Palaniyappan
,
L.
(
2023
).
Aberrant frontal lobe “U”-shaped association fibers in first-episode schizophrenia: A 7-Tesla Diffusion Imaging Study
.
NeuroImage: Clinical
,
38
,
103367
. https://doi.org/10.1016/j.nicl.2023.103367
Kakeda
,
S.
,
Yoneda
,
T.
,
Ide
,
S.
,
Watanabe
,
K.
,
Hiai
,
Y.
, &
Korogi
,
Y.
(
2016
).
Signal intensity of superficial white matter on phase difference enhanced imaging as a landmark of the perirolandic cortex
.
Acta Radiologica
,
57
(
11
),
1380
1386
. https://doi.org/10.1177/0284185115585162
Kelly
,
S.
,
Jahanshad
,
N.
,
Zalesky
,
A.
,
Kochunov
,
P.
,
Agartz
,
I.
,
Alloza
,
C.
,
Andreassen
,
O. A.
,
Arango
,
C.
,
Banaj
,
N.
,
Bouix
,
S.
,
Bousman
,
C. A.
,
Brouwer
,
R. M.
,
Bruggemann
,
J.
,
Bustillo
,
J.
,
Cahn
,
W.
,
Calhoun
,
V.
,
Cannon
,
D.
,
Carr
,
V.
,
Catts
,
S.
, …
Donohoe
,
G
. (
2018
).
Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group
.
Molecular Psychiatry
,
23
(
5
),
1261
1269
. https://doi.org/10.1038/mp.2017.170
Keshavan
,
M. S.
,
Tandon
,
R.
,
Boutros
,
N. N.
, &
Nasrallah
,
H. A.
(
2008
).
Schizophrenia, “just the facts”: What we know in 2008: Part 3: Neurobiology
.
Schizophrenia Research
,
106
(
2
),
89
107
. https://doi.org/10.1016/j.schres.2008.07.020
Kinney
,
H. C.
,
Brody
,
B. A.
,
Kloman
,
A. S.
, &
Gilles
,
F. H.
(
1988
).
Sequence of central nervous system myelination in human infancy: II. Patterns of myelination in autopsied infants
.
Journal of Neuropathology & Experimental Neurology
,
47
(
3
),
217
234
. https://doi.org/10.1097/00005072-198805000-00003
Kirilina
,
E.
,
Helbling
,
S.
,
Morawski
,
M.
,
Pine
,
K.
,
Reimann
,
K.
,
Jankuhn
,
S.
,
Dinse
,
J.
,
Deistung
,
A.
,
Reichenbach
,
J. R.
,
Trampel
,
R.
,
Geyer
,
S.
,
Müller
,
L.
,
Jakubowski
,
N.
,
Arendt
,
T.
,
Bazin
,
P.-L.
, &
Weiskopf
,
N.
(
2020
).
Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping
.
Science Advances
,
6
(
41
),
eaaz9281
. https://doi.org/10.1126/sciadv.aaz9281
Kirkpatrick
,
B.
,
Messias
,
N. C.
,
Conley
,
R. R.
, &
Roberts
,
R. C.
(
2003
).
Interstitial cells of the white matter in the dorsolateral prefrontal cortex in deficit and nondeficit schizophrenia
.
The Journal of Nervous and Mental Disease
,
191
(
9
),
563
. https://doi.org/10.1097/01.nmd.0000087181.61164.e1
Kisel
,
A.
,
Naumova
,
A.
, &
Yarnykh
,
V.
(
2022
).
Macromolecular proton fraction as a myelin biomarker: Principles, validation, and applications
.
Frontiers in Neuroscience
,
16
,
819912
. https://doi.org/10.3389/fnins.2022.819912
Klingler
,
J.
(
1935
).
Erleichterung der makrokopischen Präparation des Gehirns durch den Gefrierprozess
.
Orell Füssli
.
Klingler
,
J.
, &
Gloor
,
P.
(
1960
).
The connections of the amygdala and of the anterior temporal cortex in the human brain
.
Journal of Comparative Neurology
,
115
(
3
),
333
369
. https://doi.org/10.1002/cne.901150305
Komnenić
,
D.
,
Phillips
,
O. R.
,
Joshi
,
S. H.
,
Chien
,
C.
,
Schmitz-Hübsch
,
T.
,
Asseyer
,
S.
,
Paul
,
F.
, &
Finke
,
C.
(
2024
).
Superficial white matter integrity in neuromyelitis optica spectrum disorder and multiple sclerosis
.
Multiple Sclerosis Journal—Experimental, Translational and Clinical
,
10
(
1
),
20552173231226107
. https://doi.org/10.1177/20552173231226107
Kostović
,
I.
,
Jovanov-Milošević
,
N.
,
Radoš
,
M.
,
Sedmak
,
G.
,
Benjak
,
V.
,
Kostović-Srzentić
,
M.
,
Vasung
,
L.
,
Čuljat
,
M.
,
Radoš
,
M.
,
Hüppi
,
P.
, &
Judaš
,
M.
(
2014
).
Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches
.
Brain Structure and Function
,
219
(
1
),
231
253
. https://doi.org/10.1007/s00429-012-0496-0
Kostović
,
I.
, &
Rakic
,
P.
(
1980
).
Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon
.
Journal of Neurocytology
,
9
(
2
),
219
242
. https://doi.org/10.1007/BF01205159
Kostović
,
I.
, &
Rakic
,
P.
(
1990
).
Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain
.
Journal of Comparative Neurology
,
297
(
3
),
441
470
. https://doi.org/10.1002/cne.902970309
Kostović
,
I.
,
Sedmak
,
G.
, &
Judaš
,
M.
(
2019
).
Neural histology and neurogenesis of the human fetal and infant brain
.
NeuroImage
,
188
,
743
773
. https://doi.org/10.1016/j.neuroimage.2018.12.043
Koutsarnakis
,
C.
,
Kalyvas
,
A. V.
,
Skandalakis
,
G. P.
,
Karavasilis
,
E.
,
Christidi
,
F.
,
Komaitis
,
S.
,
Velonakis
,
G.
,
Liakos
,
F.
,
Emelifeonwu
,
J.
,
Giavri
,
Z.
,
Kalamatianos
,
T.
,
Kelekis
,
N.
, &
Stranjalis
,
G.
(
2019
).
Sledge runner fasciculus: Anatomic architecture and tractographic morphology
.
Brain Structure and Function
,
224
(
3
),
1051
1066
. https://doi.org/10.1007/s00429-018-01822-4
Kowall
,
N. W.
, &
Beal
,
M. F.
(
1988
).
Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: Normal anatomy and alterations in Alzheimer’s disease
.
Annals of Neurology
,
23
(
2
),
105
114
. https://doi.org/10.1002/ana.410230202
Lant
,
S. B.
,
Robinson
,
A. C.
,
Thompson
,
J. C.
,
Rollinson
,
S.
,
Pickering-Brown
,
S.
,
Snowden
,
J. S.
,
Davidson
,
Y. S.
,
Gerhard
,
A.
, &
Mann
,
D. M. A.
(
2014
).
Patterns of microglial cell activation in frontotemporal lobar degeneration
.
Neuropathology and Applied Neurobiology
,
40
(
6
),
686
696
. https://doi.org/10.1111/nan.12092
Laule
,
C.
, &
Moore
,
G. W.
(
2018
).
Myelin water imaging to detect demyelination and remyelination and its validation in pathology
.
Brain Pathology
,
28
(
5
),
750
764
. https://doi.org/10.1111/bpa.12645
Lebel
,
C.
,
Benner
,
T.
, &
Beaulieu
,
C.
(
2012
).
Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography
.
Magnetic Resonance in Medicine
,
68
(
2
),
474
483
. https://doi.org/10.1002/mrm.23254
Lebel
,
C.
, &
Deoni
,
S.
(
2018
).
The development of brain white matter microstructure
.
NeuroImage
,
182
,
207
218
. https://doi.org/10.1016/j.neuroimage.2017.12.097
Lebel
,
C.
,
Walker
,
L.
,
Leemans
,
A.
,
Phillips
,
L.
, &
Beaulieu
,
C.
(
2008
).
Microstructural maturation of the human brain from childhood to adulthood
.
NeuroImage
,
40
(
3
),
1044
1055
. https://doi.org/10.1016/j.neuroimage.2007.12.053
Lee
,
S.
,
Shin
,
H.-G.
,
Kim
,
M.
, &
Lee
,
J.
(
2023
).
Depth-wise profiles of iron and myelin in the cortex and white matter using χ-separation: A preliminary study
.
NeuroImage
,
273
,
120058
. https://doi.org/10.1016/j.neuroimage.2023.120058
Lerch
,
J. P.
,
Kouwe
van der
,
W.
A. J.
,
Raznahan
,
A.
,
Paus
,
T.
,
Johansen-Berg
,
H.
,
Miller
,
K. L.
,
Smith
,
S. M.
,
Fischl
,
B.
, &
Sotiropoulos
,
S. N.
(
2017
).
Studying neuroanatomy using MRI
.
Nature Neuroscience
,
20
(
3
),
314
326
. https://doi.org/10.1038/nn.4501
Li
,
J.
,
Li
,
J.
,
Huang
,
P.
,
Huang
,
L.-N.
,
Ding
,
Q.-G.
,
Zhan
,
L.
,
Li
,
M.
,
Zhang
,
J.
,
Zhang
,
H.
,
Cheng
,
L.
,
Li
,
H.
,
Liu
,
D.-Q.
,
Zhou
,
H.-Y.
, &
Jia
,
X.-Z.
(
2022
).
Increased functional connectivity of white-matter in myotonic dystrophy type 1
.
Frontiers in Neuroscience
,
16
,
953742
. https://doi.org/10.3389/fnins.2022.953742
Li
,
M.
,
Gao
,
Y.
,
Gao
,
F.
,
Anderson
,
A. W.
,
Ding
,
Z.
, &
Gore
,
J. C.
(
2020
).
Functional engagement of white matter in resting-state brain networks
.
NeuroImage
,
220
,
117096
. https://doi.org/10.1016/j.neuroimage.2020.117096
Li
,
M.
,
Newton
,
A. T.
,
Anderson
,
A. W.
,
Ding
,
Z.
, &
Gore
,
J. C.
(
2019
).
Characterization of the hemodynamic response function in white matter tracts for event-related fMRI
.
Nature Communications
,
10
(
1
),
1140
. https://doi.org/10.1038/s41467-019-09076-2
Li
,
Y.
,
Nie
,
X.
,
Fu
,
Y.
, &
Shi
,
Y.
(
2023
).
FASSt: Filtering via symmetric autoencoder for spherical superficial white matter tractography
.
Computational Diffusion MRI: MICCAI Workshop
,
14328
,
129
139
. https://doi.org/10.1007/978-3-031-47292-3_12
Liu
,
M.
,
Bernhardt
,
B. C.
,
Hong
,
S.-J.
,
Caldairou
,
B.
,
Bernasconi
,
A.
, &
Bernasconi
,
N.
(
2016
).
The superficial white matter in temporal lobe epilepsy: A key link between structural and functional network disruptions
.
Brain: A Journal of Neurology
,
139
(
Pt 9
),
2431
2440
. https://doi.org/10.1093/brain/aww167
Llinares-Benadero
,
C.
, &
Borrell
,
V.
(
2019
).
Deconstructing cortical folding: Genetic, cellular and mechanical determinants
.
Nature Reviews Neuroscience
,
20
(
3
),
161
176
. https://doi.org/10.1038/s41583-018-0112-2
Lotan
,
A.
,
Luza
,
S.
,
Opazo
,
C. M.
,
Ayton
,
S.
,
Lane
,
D. J. R.
,
Mancuso
,
S.
,
Pereira
,
A.
,
Sundram
,
S.
,
Weickert
,
C. S.
,
Bousman
,
C.
,
Pantelis
,
C.
,
Everall
,
I. P.
, &
Bush
,
A. I.
(
2023
).
Perturbed iron biology in the prefrontal cortex of people with schizophrenia
.
Molecular Psychiatry
,
28
(
5
),
2058
2070
. https://doi.org/10.1038/s41380-023-01979-3
Lutti
,
A.
,
Dick
,
F.
,
Sereno
,
M. I.
, &
Weiskopf
,
N.
(
2014
).
Using high-resolution quantitative mapping of R1 as an index of cortical myelination
.
NeuroImage
,
93
(
Pt 2
),
176
188
. https://doi.org/10/f54vr8
Mackenzie
,
I. R.
, &
Neumann
,
M.
(
2020
).
Subcortical TDP-43 pathology patterns validate cortical FTLD-TDP subtypes and demonstrate unique aspects of C9orf72 mutation cases
.
Acta Neuropathologica
,
139
(
1
),
83
98
. https://doi.org/10.1007/s00401-019-02070-4
Maffei
,
C.
,
Capasso
,
R.
,
Cazzolli
,
G.
,
Colosimo
,
C.
,
Dell’Acqua
,
F.
,
Piludu
,
F.
,
Catani
,
M.
, &
Miceli
,
G.
(
2017
).
Pure word deafness following left temporal damage: Behavioral and neuroanatomical evidence from a new case
.
Cortex
,
97
,
240
254
. https://doi.org/10.1016/j.cortex.2017.10.006
Magro
,
E.
,
Moreau
,
T.
,
Seizeur
,
R.
,
Gibaud
,
B.
, &
Morandi
,
X.
(
2012
).
Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI
.
Neuroradiology
,
54
(
11
),
1275
1285
. https://doi.org/10/f4gpph
Maier-Hein
,
K. H.
,
Neher
,
P. F.
,
Houde
,
J.-C.
,
Côté
,
M.-A.
,
Garyfallidis
,
E.
,
Zhong
,
J.
,
Chamberland
,
M.
,
Yeh
,
F.-C.
,
Lin
,
Y.-C.
,
Ji
,
Q.
,
Reddick
,
W. E.
,
Glass
,
J. O.
,
Chen
,
D. Q.
,
Feng
,
Y.
,
Gao
,
C.
,
Wu
,
Y.
,
Ma
,
J.
,
He
,
R.
,
Li
,
Q.
, …
Descoteaux
,
M
. (
2017
).
The challenge of mapping the human connectome based on diffusion tractography
.
Nature Communications
,
8
(
1
),
1
13
. https://doi.org/10/gcj93q
Maldonado
,
I. L.
,
Mandonnet
,
E.
, &
Duffau
,
H.
(
2012
).
Dorsal fronto-parietal connections of the human brain: A fiber dissection study of their composition and anatomical relationships
.
The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology
,
295
(
2
),
187
195
. https://doi.org/10/fx68zt
Malykhin
,
N.
,
Vahidy
,
S.
,
Michielse
,
S.
,
Coupland
,
N.
,
Camicioli
,
R.
,
Seres
,
P.
, &
Carter
,
R.
(
2011
).
Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging
.
Brain Structure and Function
,
216
(
4
),
417
431
. https://doi.org/10.1007/s00429-011-0321-1
Mangin
,
J.-F.
,
Le Guen
,
Y.
,
Labra
,
N.
,
Grigis
,
A.
,
Frouin
,
V.
,
Guevara
,
M.
,
Fischer
,
C.
,
Rivière
,
D.
,
Hopkins
,
W. D.
,
Régis
,
J.
, &
Sun
,
Z. Y.
(
2019
).
“Plis de passage” deserve a role in models of the cortical folding process
.
Brain Topography
,
32
(
6
),
1035
1048
. https://doi.org/10.1007/s10548-019-00734-8
Maricich
,
S. M.
,
Azizi
,
P.
,
Jones
,
J. Y.
,
Morriss
,
M. C.
,
Hunter
,
J. V.
,
Smith
,
E. O.
, &
Miller
,
G.
(
2007
).
Myelination as assessed by conventional MR imaging is normal in young children with idiopathic developmental delay
.
American Journal of Neuroradiology
,
28
(
8
),
1602
1605
. https://doi.org/10.3174/ajnr.A0602
Martin
,
E.
,
Kikinis
,
R.
,
Zuerrer
,
M.
,
Boesch
,
C.
,
Briner
,
J.
,
Kewitz
,
G.
, &
Kaelin
,
P.
(
1988
).
Developmental stages of human brain: An MR study
.
Journal of Computer Assisted Tomography
,
12
(
6
),
917
. https://doi.org/10.1097/00004728-198811000-00002
Meencke
,
H. J.
(
1983
).
The density of dystopic neurons in the white matter of the gyrus frontalis inferior in epilepsies
.
Journal of Neurology
,
230
(
3
),
171
181
. https://doi.org/10.1007/BF00313628
Mendoza
,
C.
,
Román
,
C.
,
Mangin
,
J.-F.
,
Hernández
,
C.
, &
Guevara
,
P.
(
2024
).
Short fiber bundle filtering and test-retest reproducibility of the Superficial White Matter
.
Frontiers in Neuroscience
,
18
,
1394681
. https://doi.org/10.3389/fnins.2024.1394681
Mendoza
,
C.
,
Román
,
C.
,
Vázquez
,
A.
,
Poupon
,
C.
,
Mangin
,
J.-F.
,
Hernández
,
C.
, &
Guevara
,
P.
(
2021
).
Enhanced automatic segmentation for superficial white matter fiber bundles for probabilistic tractography datasets
. In
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
(pp.
3654
3658
).
IEEE
. https://doi.org/10.1109/EMBC46164.2021.9630529
Meyer
,
G.
,
Wahle
,
P.
,
Castaneyra-Perdomo
,
A.
, &
Ferres-Torres
,
R.
(
1992
).
Morphology of neurons in the white matter of the adult human neocortex
.
Experimental Brain Research
,
88
(
1
),
204
212
. https://doi.org/10.1007/BF02259143
Mezer
,
A.
,
Rokem
,
A.
,
Berman
,
S.
,
Hastie
,
T.
, &
Wandell
,
B. A.
(
2016
).
Evaluating quantitative proton-density-mapping methods
.
Human Brain Mapping
,
37
(
10
),
3623
3635
. https://doi.org/10.1002/hbm.23264
Mezer
,
A.
,
Yovel
,
Y.
,
Pasternak
,
O.
,
Gorfine
,
T.
, &
Assaf
,
Y.
(
2009
).
Cluster analysis of resting-state fMRI time series
.
NeuroImage
,
45
(
4
),
1117
1125
. https://doi.org/10.1016/j.neuroimage.2008.12.015
Miller
,
R. H.
, &
Raff
,
M. C.
(
1984
).
Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct
.
Journal of Neuroscience
,
4
(
2
),
585
592
. https://doi.org/10.1523/JNEUROSCI.04-02-00585.1984
Mittelbronn
,
M.
,
Dietz
,
K.
,
Schluesener
,
H. J.
, &
Meyermann
,
R.
(
2001
).
Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude
.
Acta Neuropathologica
,
101
(
3
),
249
255
. https://doi.org/10.1007/s004010000284
Monroy-Sosa
,
A.
,
Chakravarthi
,
S. S.
,
Fukui
,
M. B.
,
Kura
,
B.
,
Jennings
,
J. E.
,
Celix
,
J. M.
,
Nash
,
K. C.
,
Kassam
,
M.
,
Rovin
,
R. A.
, &
Kassam
,
A. B.
(
2020
).
White matter-governed superior frontal sulcus surgical paradigm: A radioanatomic microsurgical study—Part I
.
Operative Neurosurgery
,
19
(
4
),
E343
. https://doi.org/10.1093/ons/opaa065
Mori
,
H.
,
Yagishita
,
A.
,
Takeda
,
T.
, &
Mizutani
,
T.
(
2007
).
Symmetric temporal abnormalities on MR imaging in amyotrophic lateral sclerosis with dementia
.
American Journal of Neuroradiology
,
28
(
8
),
1511
1516
. https://doi.org/10.3174/ajnr.A0624
Morris
,
S. R.
,
Vavasour
,
I. M.
,
Smolina
,
A.
,
MacMillan
,
E. L.
,
Gilbert
,
G.
,
Lam
,
M.
,
Kozlowski
,
P.
,
Michal
,
C. A.
,
Manning
,
A.
,
MacKay
,
A. L.
, &
Laule
,
C.
(
2023
).
Myelin biomarkers in the healthy adult brain: Correlation, reproducibility, and the effect of fiber orientation
.
Magnetic Resonance in Medicine
,
89
(
5
),
1809
1824
. https://doi.org/10.1002/mrm.29552
Mortazavi
,
F.
,
Romano
,
S. E.
,
Rosene
,
D. L.
, &
Rockland
,
K. S.
(
2017
).
A survey of white matter neurons at the gyral crowns and sulcal depths in the rhesus monkey
.
Frontiers in Neuroanatomy
,
11
,
69
. https://doi.org/10.3389/fnana.2017.00069
Mortazavi
,
F.
,
Wang
,
X.
,
Rosene
,
D. L.
, &
Rockland
,
K. S.
(
2016
).
White matter neurons in young adult and aged rhesus monkey
.
Frontiers in Neuroanatomy
,
10
,
15
. https://doi.org/10.3389/fnana.2016.00015
Moura
,
L. M.
,
Kempton
,
M.
,
Barker
,
G.
,
Salum
,
G.
,
Gadelha
,
A.
,
Pan
,
P. M.
,
Hoexter
,
M.
,
Aquilla
Del
,
G.
M. A.
,
Picon
,
F. A.
,
Anés
,
M.
,
Otaduy
,
M. C. G.
,
Amaro
,
E.
,
Rohde
,
L. A.
,
McGuire
,
P.
,
Bressan
,
R. A.
,
Sato
,
J. R.
, &
Jackowski
,
A. P.
(
2016
).
Age-effects in white matter using associated diffusion tensor imaging and magnetization transfer ratio during late childhood and early adolescence
.
Magnetic Resonance Imaging
,
34
(
4
),
529
534
. https://doi.org/10.1016/j.mri.2015.12.021
Movahedian Attar
,
F.
,
Kirilina
,
E.
,
Haenelt
,
D.
,
Pine
,
K. J.
,
Trampel
,
R.
,
Edwards
,
L. J.
, &
Weiskopf
,
N.
(
2020
).
Mapping short association fibers in the early cortical visual processing stream using in vivo diffusion tractography
.
Cerebral Cortex
,
30
(
8
),
4496
4514
. https://doi.org/10.1093/cercor/bhaa049
Mukherjee
,
P.
,
Berman
,
J. I.
,
Chung
,
S. W.
,
Hess
,
C. P.
, &
Henry
,
R. G.
(
2008
).
Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings
.
American Journal of Neuroradiology
,
29
(
4
),
632
641
. https://doi.org/10.3174/ajnr.A1051
Munn
,
Z.
,
Peters
,
M. D. J.
,
Stern
,
C.
,
Tufanaru
,
C.
,
McArthur
,
A.
, &
Aromataris
,
E.
(
2018
).
Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach
.
BMC Medical Research Methodology
,
18
(
1
),
143
. https://doi.org/10.1186/s12874-018-0611-x
Nachtergaele
,
P.
,
Radwan
,
A.
,
Swinnen
,
S.
,
Decramer
,
T.
,
Uytterhoeven
,
M.
,
Sunaert
,
S.
,
van Loon
,
J.
, &
Theys
,
T.
(
2019
).
The temporoinsular projection system: An anatomical study
.
Journal of Neurosurgery
,
132
(
2
),
615
623
. https://doi.org/10.3171/2018.11.JNS18679
Nazeri
,
A.
,
Chakravarty
,
M. M.
,
Felsky
,
D.
,
Lobaugh
,
N. J.
,
Rajji
,
T. K.
,
Mulsant
,
B. H.
, &
Voineskos
,
A. N.
(
2013
).
Alterations of superficial white matter in schizophrenia and relationship to cognitive performance
.
Neuropsychopharmacology
,
38
(
10
),
1954
1962
. https://doi.org/10.1038/npp.2013.93
Nazeri
,
A.
,
Chakravarty
,
M. M.
,
Rajji
,
T. K.
,
Felsky
,
D.
,
Rotenberg
,
D. J.
,
Mason
,
M.
,
Xu
,
L. N.
,
Lobaugh
,
N. J.
,
Mulsant
,
B. H.
, &
Voineskos
,
A. N.
(
2015
).
Superficial white matter as a novel substrate of age-related cognitive decline
.
Neurobiology of Aging
,
36
(
6
),
2094
2106
. https://doi.org/10/gm5qxk
Neumann
,
M.
,
Kwong
,
L. K.
,
Truax
,
A. C.
,
Vanmassenhove
,
B.
,
Kretzschmar
,
H. A.
,
Van Deerlin
,
V. M.
,
Clark
,
C. M.
,
Grossman
,
M.
,
Miller
,
B. L.
,
Trojanowski
,
J. Q.
, &
Lee
,
V. M.-Y.
(
2007
).
Tdp-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions
.
Journal of Neuropathology & Experimental Neurology
,
66
(
3
),
177
183
. https://doi.org/10.1097/01.jnen.0000248554.45456.58
Nie
,
X.
,
Ruan
,
J.
,
Otaduy
,
M. C. G.
,
Grinberg
,
L. T.
,
Ringman
,
J.
, &
Shi
,
Y.
(
2023
).
Surface-based probabilistic fiber tracking in superficial white matter
.
IEEE Transactions on Medical Imaging
,
43
(
3
),
1113
1124
. https://doi.org/10.1109/TMI.2023.3329451
Norris
,
P. J.
,
Faull
,
R. L.
, &
Emson
,
P. C.
(
1996
).
Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer’s disease brains
.
Brain Research: Molecular Brain Research
,
41
(
1–2
),
36
49
. https://doi.org/10.1016/0169-328x(96)00064-2
Oberheim
,
N. A.
,
Takano
,
T.
,
Han
,
X.
,
He
,
W.
,
Lin
,
J. H. C.
,
Wang
,
F.
,
Xu
,
Q.
,
Wyatt
,
J. D.
,
Pilcher
,
W.
,
Ojemann
,
J. G.
,
Ransom
,
B. R.
,
Goldman
,
S. A.
, &
Nedergaard
,
M.
(
2009
).
Uniquely hominid features of adult human astrocytes
.
Journal of Neuroscience
,
29
(
10
),
3276
3287
. https://doi.org/10.1523/JNEUROSCI.4707-08.2009
O’Donnell
,
L. J.
, &
Westin
,
C.-F.
(
2011
).
An introduction to diffusion tensor image analysis
.
Neurosurgery clinics of North America
,
22
(
2
),
185
196, viii
. https://doi.org/10.1016/j.nec.2010.12.004
Oishi
,
K.
,
Zilles
,
K.
,
Amunts
,
K.
,
Faria
,
A.
,
Jiang
,
H.
,
Li
,
X.
,
Akhter
,
K.
,
Hua
,
K.
,
Woods
,
R.
,
Toga
,
A. W.
,
Pike
,
G. B.
,
Rosa-Neto
,
P.
,
Evans
,
A.
,
Zhang
,
J.
,
Huang
,
H.
,
Miller
,
M. I.
,
van Zijl
,
P. C. M.
,
Mazziotta
,
J.
, &
Mori
,
S.
(
2008
).
Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter
.
NeuroImage
,
43
(
3
),
447
457
. https://doi.org/10/fvgr36
Osanai
,
Y.
,
Yamazaki
,
R.
,
Shinohara
,
Y.
, &
Ohno
,
N.
(
2022
).
Heterogeneity and regulation of oligodendrocyte morphology
.
Frontiers in Cell and Developmental Biology
,
10
,
1030486
. https://doi.org/10.3389/fcell.2022.1030486
Ostrowski
,
L. M.
,
Song
,
D. Y.
,
Thorn
,
E. L.
,
Ross
,
E. E.
,
Stoyell
,
S. M.
,
Chinappen
,
D. M.
,
Eden
,
U. T.
,
Kramer
,
M. A.
,
Emerton
,
B. C.
,
Morgan
,
A. K.
,
Stufflebeam
,
S. M.
, &
Chu
,
C. J.
(
2019
).
Dysmature superficial white matter microstructure in developmental focal epilepsy
.
Brain Communications
,
1
(
1
),
fcz002
. https://doi.org/10.1093/braincomms/fcz002
Ouyang
,
M.
,
Jeon
,
T.
,
Mishra
,
V.
,
Du
,
H.
,
Wang
,
Y.
,
Peng
,
Y.
, &
Huang
,
H.
(
2016
).
Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts
.
Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging
,
9788
,
328
334
. https://doi.org/10.1117/12.2218029
Ouyang
,
M.
,
Jeon
,
T.
,
Sotiras
,
A.
,
Peng
,
Q.
,
Mishra
,
V.
,
Halovanic
,
C.
,
Chen
,
M.
,
Chalak
,
L.
,
Rollins
,
N.
,
Roberts
,
T. P. L.
,
Davatzikos
,
C.
, &
Huang
,
H.
(
2019
).
Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging
.
Proceedings of the National Academy of Sciences of the United States of America
,
116
(
10
),
4681
4688
. https://doi.org/10.1073/pnas.1812156116
Ouyang
,
M.
,
Kang
,
H.
,
Detre
,
J. A.
,
Roberts
,
T. P. L.
, &
Huang
,
H.
(
2017
).
Short-range connections in the developmental connectome during typical and atypical brain maturation
.
Neuroscience and Biobehavioral Reviews
,
83
,
109
122
. https://doi.org/10.1016/j.neubiorev.2017.10.007
Oyefiade
,
A. A.
,
Ameis
,
S.
,
Lerch
,
J. P.
,
Rockel
,
C.
,
Szulc
,
K. U.
,
Scantlebury
,
N.
,
Decker
,
A.
,
Jefferson
,
J.
,
Spichak
,
S.
, &
Mabbott
,
D. J.
(
2018
).
Development of short-range white matter in healthy children and adolescents
.
Human Brain Mapping
,
39
(
1
),
204
217
. https://doi.org/10.1002/hbm.23836
Palejwala
,
A. H.
,
O’Connor
,
K. P.
,
Milton
,
C. K.
,
Anderson
,
C.
,
Pelargos
,
P.
,
Briggs
,
R. G.
,
Conner
,
A. K.
,
O’Donoghue
,
D. L.
,
Glenn
,
C. A.
, &
Sughrue
,
M. E.
(
2020
).
Anatomy and white matter connections of the fusiform gyrus
.
Scientific Reports
,
10
(
1
),
13489
. https://doi.org/10.1038/s41598-020-70410-6
Palombo
,
M.
,
Ianus
,
A.
,
Guerreri
,
M.
,
Nunes
,
D.
,
Alexander
,
D. C.
,
Shemesh
,
N.
, &
Zhang
,
H.
(
2020
).
Sandi: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI
.
NeuroImage
,
215
,
116835
. https://doi.org/10.1016/j.neuroimage.2020.116835
Parazzini
,
C.
,
Baldoli
,
C.
,
Scotti
,
G.
, &
Triulzi
,
F.
(
2002
).
Terminal zones of myelination: MR evaluation of children aged 20–40 months
.
American Journal of Neuroradiology
,
23
(
10
),
1669
1673
. https://www.ajnr.org/content/23/10/1669
Pardo
,
E.
,
Guevara
,
P.
,
Duclap
,
D.
,
Houenou
,
J.
,
Lebois
,
A.
,
Schmitt
,
B.
,
Le Bihan
,
D.
,
Mangin
,
J.-F.
, &
Poupon
,
C.
(
2013
).
Study of the variability of short association bundles on a HARDI database
. In
2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(pp.
77
80
).
IEEE
. https://doi.org/10/gm5qxj
Parent
,
O.
,
Olafson
,
E.
,
Bussy
,
A.
,
Tullo
,
S.
,
Blostein
,
N.
,
Dai
,
A.
,
Salaciak
,
A.
,
Bedford
,
S. A.
,
Farzin
,
S.
,
Béland
,
M.-L.
,
Valiquette
,
V.
,
Tardif
,
C. L.
,
Devenyi
,
G. A.
, &
Chakravarty
,
M. M.
(
2023
).
High spatial overlap but diverging age-related trajectories of cortical magnetic resonance imaging markers aiming to represent intracortical myelin and microstructure
.
Human Brain Mapping
,
44
(
8
),
3023
3044
. https://doi.org/10.1002/hbm.26259
Pascual-Diaz
,
S.
,
Varriano
,
F.
,
Pineda
,
J.
, &
Prats-Galino
,
A.
(
2020
).
Structural characterization of the Extended Frontal Aslant Tract trajectory: A ML-validated laterality study in 3T and 7T
.
NeuroImage
,
222
,
117260
. https://doi.org/10.1016/j.neuroimage.2020.117260
Paydar
,
A.
,
Fieremans
,
E.
,
Nwankwo
,
J. I.
,
Lazar
,
M.
,
Sheth
,
H. D.
,
Adisetiyo
,
V.
,
Helpern
,
J. A.
,
Jensen
,
J. H.
, &
Milla
,
S. S.
(
2014
).
Diffusional kurtosis imaging of the developing brain
.
American Journal of Neuroradiology
,
35
(
4
),
808
814
. https://doi.org/10.3174/ajnr.A3764
Peer
,
M.
,
Nitzan
,
M.
,
Bick
,
A. S.
,
Levin
,
N.
, &
Arzy
,
S.
(
2017
).
Evidence for functional networks within the human brain’s white matter
.
Journal of Neuroscience
,
37
(
27
),
6394
6407
. https://doi.org/10.1523/JNEUROSCI.3872-16.2017
Petit
,
L.
,
Ali
,
K. M.
,
Rheault
,
F.
,
Boré
,
A.
,
Cremona
,
S.
,
Corsini
,
F.
,
De Benedictis
,
A.
,
Descoteaux
,
M.
, &
Sarubbo
,
S.
(
2023
).
The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography
.
Brain Structure and Function
,
228
(
1
),
103
120
. https://doi.org/10.1007/s00429-022-02551-5
Phillips
,
O. R.
,
Clark
,
K. A.
,
Luders
,
E.
,
Azhir
,
R.
,
Joshi
,
S. H.
,
Woods
,
R. P.
,
Mazziotta
,
J. C.
,
Toga
,
A. W.
, &
Narr
,
K. L.
(
2013
).
Superficial white matter: Effects of age, sex, and hemisphere
.
Brain Connectivity
,
3
(
2
),
146
159
. https://doi.org/10.1089/brain.2012.0111
Phillips
,
O. R.
,
Joshi
,
S. H.
,
Narr
,
K. L.
,
Shattuck
,
D. W.
,
Singh
,
M.
,
Paola
,
M. D.
,
Ploner
,
C. J.
,
Prüss
,
H.
,
Paul
,
F.
, &
Finke
,
C.
(
2018
).
Superficial white matter damage in anti-NMDA receptor encephalitis
.
Journal of Neurology, Neurosurgery & Psychiatry
,
89
(
5
),
518
525
. https://doi.org/10.1136/jnnp-2017-316822
Phillips
,
O. R.
,
Joshi
,
S. H.
,
Piras
,
F.
,
Orfei
,
M. D.
,
Iorio
,
M.
,
Narr
,
K. L.
,
Shattuck
,
D. W.
,
Caltagirone
,
C.
,
Spalletta
,
G.
, &
Paola
Di
, M
. (
2016
).
The superficial white matter in Alzheimer’s disease
.
Human Brain Mapping
,
37
(
4
),
1321
1334
. https://doi.org/10.1002/hbm.23105
Phillips
,
O. R.
,
Joshi
,
S. H.
,
Squitieri
,
F.
,
Sanchez-Castaneda
,
C.
,
Narr
,
K.
,
Shattuck
,
D. W.
,
Caltagirone
,
C.
,
Sabatini
,
U.
, &
Paola
Di
, M
. (
2016
).
Major superficial white matter abnormalities in Huntington’s disease
.
Frontiers in Neuroscience
,
10
,
197
. https://doi.org/10.3389/fnins.2016.00197
Phillips
,
O. R.
,
Nuechterlein
,
K. H.
,
Asarnow
,
R. F.
,
Clark
,
K. A.
,
Cabeen
,
R.
,
Yang
,
Y.
,
Woods
,
R. P.
,
Toga
,
A. W.
, &
Narr
,
K. L.
(
2011
).
Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability
.
Biological Psychiatry
,
70
(
7
),
680
689
. https://doi.org/10.1016/j.biopsych.2011.03.039
Pietrasik
,
W.
,
Cribben
,
I.
,
Olsen
,
F.
, &
Malykhin
,
N.
(
2023
).
Diffusion tensor imaging of superficial prefrontal white matter in healthy aging
.
Brain Research
,
1799
,
148152
. https://doi.org/10.1016/j.brainres.2022.148152
Pron
,
A.
,
Deruelle
,
C.
, &
Coulon
,
O.
(
2021
).
U-shape short-range extrinsic connectivity organisation around the human central sulcus
.
Brain Structure and Function
,
226
(
1
),
179
193
. https://doi.org/10.1007/s00429-020-02177-5
Ravanfar
,
P.
,
Syeda
,
W. T.
,
Jayaram
,
M.
,
Rushmore
,
R. J.
,
Moffat
,
B.
,
Lin
,
A. P.
,
Lyall
,
A. E.
,
Merritt
,
A. H.
,
Yaghmaie
,
N.
,
Laskaris
,
L.
,
Luza
,
S.
,
Opazo
,
C. M.
,
Liberg
,
B.
,
Chakravarty
,
M. M.
,
Devenyi
,
G. A.
,
Desmond
,
P.
,
Cropley
,
V. L.
,
Makris
,
N.
,
Shenton
,
M. E.
, …
Pantelis
,
C
. (
2022
).
In vivo 7-Tesla MRI Investigation of brain iron and its metabolic correlates in chronic schizophrenia
.
Schizophrenia (Heidelberg, Germany)
,
8
(
1
),
86
. https://doi.org/10.1038/s41537-022-00293-1
Reginold
,
W.
,
Luedke
,
A. C.
,
Itorralba
,
J.
,
Fernandez-Ruiz
,
J.
,
Islam
,
O.
, &
Garcia
,
A.
(
2016
).
Altered superficial white matter on tractography MRI in Alzheimer’s disease
.
Dementia and Geriatric Cognitive Disorders EXTRA
,
6
(
2
),
233
241
. https://doi.org/10.1159/000446770
Reveley
,
C.
,
Seth
,
A. K.
,
Pierpaoli
,
C.
,
Silva
,
A. C.
,
Yu
,
D.
,
Saunders
,
R. C.
,
Leopold
,
D. A.
, &
Ye
,
F. Q.
(
2015
).
Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography
.
Proceedings of the National Academy of Sciences of the United States of America
,
112
(
21
),
E2820
E2828
. https://doi.org/10.1073/pnas.1418198112
Riley
,
K.
,
O’Neill
,
D.
, &
Kralik
,
S.
(
2018
).
Subcortical U-fibers: Signposts to the diagnosis of white matter disease
.
Neurographics
,
8
(
4
),
234
243
. https://doi.org/10/gm5qxz
Rojkova
,
K.
,
Volle
,
E.
,
Urbanski
,
M.
,
Humbert
,
F.
,
Dell’Acqua
,
F.
, &
Thiebaut de Schotten
,
M
. (
2016
).
Atlasing the frontal lobe connections and their variability due to age and education: A spherical deconvolution tractography study
.
Brain Structure & Function
,
221
(
3
),
1751
1766
. https://doi.org/10/f8hmvm
Román
,
C.
,
Guevara
,
M.
,
Valenzuela
,
R.
,
Figueroa
,
M.
,
Houenou
,
J.
,
Duclap
,
D.
,
Poupon
,
C.
,
Mangin
,
J.-F.
, &
Guevara
,
P.
(
2017
).
Clustering of whole-brain white matter short association bundles using HARDI data
.
Frontiers in Neuroinformatics
,
11
,
73
. https://doi.org/10.3389/fninf.2017.00073
Román
,
C.
,
Hernández
,
C.
,
Figueroa
,
M.
,
Houenou
,
J.
,
Poupon
,
C.
,
Mangin
,
J.-F.
, &
Guevara
,
P.
(
2022
).
Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data
.
NeuroImage
,
262
,
119550
. https://doi.org/10.1016/j.neuroimage.2022.119550
Ruetten
,
P. P. R.
,
Gillard
,
J. H.
, &
Graves
,
M. J.
(
2019
).
Introduction to quantitative susceptibility mapping and susceptibility weighted imaging
.
British Journal of Radiology
,
92
(
1101
),
20181016
. https://doi.org/10.1259/bjr.20181016
Sakae
,
N.
,
Roemer
,
S. F.
,
Bieniek
,
K. F.
,
Murray
,
M. E.
,
Baker
,
M. C.
,
Kasanuki
,
K.
,
Graff-Radford
,
N. R.
,
Petrucelli
,
L.
,
Van Blitterswijk
,
M.
,
Rademakers
,
R.
, &
Dickson
,
D. W.
(
2019
).
Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations
.
Annals of Clinical and Translational Neurology
,
6
(
9
),
1782
1796
. https://doi.org/10.1002/acn3.50875
San Millán Ruíz
,
D.
,
Yilmaz
,
H.
, &
Gailloud
,
P.
(
2009
).
Cerebral developmental venous anomalies: Current concepts
.
Annals of Neurology
,
66
(
3
),
271
283
. https://doi.org/10.1002/ana.21754
Sarnat
,
H. B.
,
Hader
,
W.
,
Flores-Sarnat
,
L.
, &
Bello-Espinosa
,
L.
(
2018
).
Synaptic plexi of U-fibre layer beneath focal cortical dysplasias: Role in epileptic networks
.
Clinical Neuropathology
,
37
(
6
),
262
276
. https://doi.org/10.5414/NP301103
Schilling
,
K.
,
Gao
,
Y.
,
Janve
,
V.
,
Stepniewska
,
I.
,
Landman
,
B. A.
, &
Anderson
,
A. W.
(
2018
).
Confirmation of a gyral bias in diffusion MRI fiber tractography
.
Human Brain Mapping
,
39
(
3
),
1449
1466
. https://doi.org/10.1002/hbm.23936
Schilling
,
K. G.
,
Archer
,
D.
,
Rheault
,
F.
,
Lyu
,
I.
,
Huo
,
Y.
,
Cai
,
L. Y.
,
Bunge
,
S. A.
,
Weiner
,
K. S.
,
Gore
,
J. C.
,
Anderson
,
A. W.
, &
Landman
,
B. A.
(
2023
).
Superficial white matter across development, young adulthood, and aging: Volume, thickness, and relationship with cortical features
.
Brain Structure and Function
,
228
(
3
),
1019
1031
. https://doi.org/10.1007/s00429-023-02642-x
Schilling
,
K. G.
,
Archer
,
D.
,
Yeh
,
F.-C.
,
Rheault
,
F.
,
Cai
,
L. Y.
,
Shafer
,
A.
,
Resnick
,
S. M.
,
Hohman
,
T.
,
Jefferson
,
A.
,
Anderson
,
A. W.
,
Kang
,
H.
, &
Landman
,
B. A.
(
2023
).
Short superficial white matter and aging: A longitudinal multi-site study of 1293 subjects and 2711 sessions
.
Aging Brain
,
3
,
100067
. https://doi.org/10.1016/j.nbas.2023.100067
Schilling
,
K. G.
,
Li
,
M.
,
Rheault
,
F.
,
Ding
,
Z.
,
Anderson
,
A. W.
,
Kang
,
H.
,
Landman
,
B. A.
, &
Gore
,
J. C.
(
2022
).
Anomalous and heterogeneous characteristics of the BOLD hemodynamic response function in white matter
.
Cerebral Cortex Communications
,
3
(
3
),
tgac035
. https://doi.org/10.1093/texcom/tgac035
Schilling
,
K. G.
,
Nath
,
V.
,
Blaber
,
J.
,
Harrigan
,
R. L.
,
Ding
,
Z.
,
Anderson
,
A. W.
, &
Landman
,
B. A.
(
2017
).
Effects of b-value and number of gradient directions on diffusion MRI measures obtained with Q-ball imaging
.
Proceedings of SPIE—The International Society for Optical Engineering
,
10133
,
101330N
. https://doi.org/10.1117/12.2254545
Schilling
,
K. G.
,
Tax
,
C. M. W.
,
Rheault
,
F.
,
Landman
,
B. A.
,
Anderson
,
A. W.
,
Descoteaux
,
M.
, &
Petit
,
L.
(
2022
).
Prevalence of white matter pathways coming into a single white matter voxel orientation: The bottleneck issue in tractography
.
Human Brain Mapping
,
43
(
4
),
1196
1213
. https://doi.org/10.1002/hbm.25697
Schneider
,
J.
,
Kober
,
T.
,
Graz
,
M. B.
,
Meuli
,
R.
,
Hüppi
,
P. S.
,
Hagmann
,
P.
, &
Truttmann
,
A. C.
(
2016
).
Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: A serial imaging study on preterm infants
.
American Journal of Neuroradiology
,
37
(
1
),
155
162
. https://doi.org/10.3174/ajnr.A4510
Sedmak
,
G.
, &
Judaš
,
M.
(
2019
).
The total number of white matter interstitial neurons in the human brain
.
Journal of Anatomy
,
235
(
3
),
626
636
. https://doi.org/10.1111/joa.13018
Sedmak
,
G.
, &
Judaš
,
M.
(
2021
).
White matter interstitial neurons in the adult human brain: 3% of cortical neurons in quest for recognition
.
Cells
,
10
(
1
),
190
. https://doi.org/10.3390/cells10010190
Sexton
,
C. E.
,
Walhovd
,
K. B.
,
Storsve
,
A. B.
,
Tamnes
,
C. K.
,
Westlye
,
L. T.
,
Johansen-Berg
,
H.
, &
Fjell
,
A. M.
(
2014
).
Accelerated changes in white matter microstructure during aging: A longitudinal diffusion tensor imaging study
.
Journal of Neuroscience
,
34
(
46
),
15425
15436
. https://doi.org/10.1523/JNEUROSCI.0203-14.2014
Shastin
,
D.
,
Genc
,
S.
,
Parker
,
G. D.
,
Koller
,
K.
,
Tax
,
C. M. W.
,
Evans
,
J.
,
Hamandi
,
K.
,
Gray
,
W. P.
,
Jones
,
D. K.
, &
Chamberland
,
M.
(
2022
).
Surface-based tracking for short association fibre tractography
.
NeuroImage
,
260
,
119423
. https://doi.org/10.1016/j.neuroimage.2022.119423
Shin
,
H.-G.
,
Lee
,
J.
,
Yun
,
Y. H.
,
Yoo
,
S. H.
,
Jang
,
J.
,
Oh
,
S.-H.
,
Nam
,
Y.
,
Jung
,
S.
,
Kim
,
S.
,
Fukunaga
,
M.
,
Kim
,
W.
,
Choi
,
H. J.
, &
Lee
,
J.
(
2021
).
X-separation: Magnetic susceptibility source separation toward iron and myelin mapping in the brain
.
NeuroImage
,
240
,
118371
. https://doi.org/10.1016/j.neuroimage.2021.118371
Shinohara
,
H.
,
Liu
,
X.
,
Nakajima
,
R.
,
Kinoshita
,
M.
,
Ozaki
,
N.
,
Hori
,
O.
, &
Nakada
,
M.
(
2020
).
Pyramid-shape crossings and intercrossing fibers are key elements for construction of the neural network in the superficial white matter of the human cerebrum
.
Cerebral Cortex
,
30
(
10
),
5218
5228
. https://doi.org/10.1093/cercor/bhaa080
Shukla
,
D. K.
,
Keehn
,
B.
,
Smylie
,
D. M.
, &
Müller
,
R.-A.
(
2011
).
Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder
.
Neuropsychologia
,
49
(
5
),
1378
1382
. https://doi.org/10/cj3n77
Silva
,
S. M.
, &
Andrade
,
J. P.
(
2016
).
Neuroanatomy: The added value of the Klingler method
.
Annals of Anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft
,
208
,
187
193
. https://doi.org/10.1016/j.aanat.2016.06.002
Simone
,
L.
,
Viganò
,
L.
,
Fornia
,
L.
,
Howells
,
H.
,
Leonetti
,
A.
,
Puglisi
,
G.
,
Bellacicca
,
A.
,
Bello
,
L.
, &
Cerri
,
G.
(
2021
).
Distinct functional and structural connectivity of the human hand-knob supported by intraoperative findings
.
Journal of Neuroscience
,
41
(
19
),
4223
4233
. https://doi.org/10.1523/JNEUROSCI.1574-20.2021
Smiley
,
J. F.
,
Levey
,
A. I.
, &
Mesulam
,
M.-M.
(
1998
).
Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate-diaphorase in the human and monkey cerebral cortex
.
Neuroscience
,
84
(
3
),
755
769
. https://doi.org/10.1016/S0306-4522(97)00524-1
Smirnov
,
M.
,
Destrieux
,
C.
, &
Maldonado
,
I. L.
(
2021
).
Cerebral white matter vasculature: Still uncharted
?
Brain
,
144
(
12
),
3561
3575
. https://doi.org/10.1093/brain/awab273
Smith
,
R. E.
,
Tournier
,
J.-D.
,
Calamante
,
F.
, &
Connelly
,
A.
(
2012
).
Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information
.
NeuroImage
,
62
(
3
),
1924
1938
. https://doi.org/10/f364bh
Smyser
,
T. A.
,
Smyser
,
C. D.
,
Rogers
,
C. E.
,
Gillespie
,
S. K.
,
Inder
,
T. E.
, &
Neil
,
J. J.
(
2016
).
Cortical gray and adjacent white matter demonstrate synchronous maturation in very preterm infants
.
Cerebral Cortex
,
26
(
8
),
3370
3378
. https://doi.org/10.1093/cercor/bhv164
Sonnenschein
,
S. F.
,
Parr
,
A. C.
,
Larsen
,
B.
,
Calabro
,
F. J.
,
Foran
,
W.
,
Eack
,
S. M.
,
Luna
,
B.
, &
Sarpal
,
D. K.
(
2022
).
Subcortical brain iron deposition in individuals with schizophrenia
.
Journal of Psychiatric Research
,
151
,
272
278
. https://doi.org/10.1016/j.jpsychires.2022.04.013
Soustelle
,
L.
,
Antal
,
M. C.
,
Lamy
,
J.
,
Rousseau
,
F.
,
Armspach
,
J.-P.
, &
Loureiro de Sousa
,
P
. (
2019
).
Correlations of quantitative MRI metrics with myelin basic protein (MBP) staining in a murine model of demyelination
.
NMR in Biomedicine
,
32
(
9
),
e4116
. https://doi.org/10.1002/nbm.4116
Steven
,
A. J.
,
Zhuo
,
J.
, &
Melhem
,
E. R.
(
2014
).
Diffusion kurtosis imaging: An emerging technique for evaluating the microstructural environment of the brain
.
American Journal of Roentgenology
,
202
(
1
),
W26
W33
. https://doi.org/10.2214/AJR.13.11365
Stojanovski
,
S.
,
Nazeri
,
A.
,
Lepage
,
C.
,
Ameis
,
S.
,
Voineskos
,
A. N.
, &
Wheeler
,
A. L.
(
2019
).
Microstructural abnormalities in deep and superficial white matter in youths with mild traumatic brain injury
.
NeuroImage: Clinical
,
24
,
102102
. https://doi.org/10.1016/j.nicl.2019.102102
St-Onge
,
E.
,
Daducci
,
A.
,
Girard
,
G.
, &
Descoteaux
,
M.
(
2018
).
Surface-enhanced tractography (SET)
.
NeuroImage
,
169
,
524
539
. https://doi.org/10.1016/j.neuroimage.2017.12.036
Stout
,
J. N.
,
Bedoya
,
M. A.
,
Grant
,
P. E.
, &
Estroff
,
J. A.
(
2021
).
Fetal neuroimaging updates
.
Magnetic Resonance Imaging Clinics of North America
,
29
(
4
),
557
581
. https://doi.org/10.1016/j.mric.2021.06.007
Suarez-Sola
,
M. L.
,
GonzalezDelgado
,
F. J.
,
Pueyo-Morlans
,
M.
,
Medina-Bolivar
,
C.
,
HernandezAcosta
,
N. C.
,
Gonzalez-Gomez
,
M.
, &
Meyer
,
G.
(
2009
).
Neurons in the white matter of the adult human neocortex
.
Frontiers in Neuroanatomy
,
3
,
7
. https://doi.org/10.3389/neuro.05.007.2009
Sun
,
Z. Y.
,
Klöppel
,
S.
,
Rivière
,
D.
,
Perrot
,
M.
,
Frackowiak
,
R.
,
Siebner
,
H.
, &
Mangin
,
J.-F.
(
2012
).
The effect of handedness on the shape of the central sulcus
.
NeuroImage
,
60
(
1
),
332
339
. https://doi.org/10.1016/j.neuroimage.2011.12.050
Swiegers
,
J.
,
Bhagwandin
,
A.
,
Williams
,
V. M.
,
Maseko
,
B. C.
,
Sherwood
,
C. C.
,
Hård
,
T.
,
Bertelsen
,
M. F.
,
Rockland
,
K. S.
,
Molnár
,
Z.
, &
Manger
,
P. R.
(
2021
).
The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a chimpanzee (Pan troglodytes) brain
.
Journal of Comparative Neurology
,
529
(
14
),
3429
3452
. https://doi.org/10.1002/cne.25202
Taipa
,
R.
,
Brochado
,
P.
,
Robinson
,
A.
,
Reis
,
I.
,
Costa
,
P.
,
Mann
,
D. M.
,
Pires
Melo
, M., &
Sousa
,
N.
(
2017
).
Patterns of microglial cell activation in Alzheimer disease and frontotemporal lobar degeneration
.
Neurodegenerative Diseases
,
17
(
4-5
),
145
154
. https://doi.org/10.1159/000457127
Takemura
,
H.
,
Pestilli
,
F.
,
Weiner
,
K. S.
,
Keliris
,
G. A.
,
Landi
,
S. M.
,
Sliwa
,
J.
,
Ye
,
F. Q.
,
Barnett
,
M. A.
,
Leopold
,
D. A.
,
Freiwald
,
W. A.
,
Logothetis
,
N. K.
, &
Wandell
,
B. A.
(
2017
).
Occipital white matter tracts in human and macaque
.
Cerebral Cortex
,
27
(
6
),
3346
3359
. https://doi.org/10.1093/cercor/bhx070
Takemura
,
H.
,
Rokem
,
A.
,
Winawer
,
J.
,
Yeatman
,
J. D.
,
Wandell
,
B. A.
, &
Pestilli
,
F.
(
2016
).
A major human white matter pathway between dorsal and ventral visual cortex
.
Cerebral Cortex
,
26
(
5
),
2205
2214
. https://doi.org/10.1093/cercor/bhv064
Tamnes
,
C. K.
,
Østby
,
Y.
,
Fjell
,
A. M.
,
Westlye
,
L. T.
,
Due-Tønnessen
,
P.
, &
Walhovd
,
K. B.
(
2010
).
Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter wolume and microstructure
.
Cerebral Cortex
,
20
(
3
),
534
548
. https://doi.org/10.1093/cercor/bhp118
Tandon
,
R.
,
Nasrallah
,
H. A.
, &
Keshavan
,
M. S.
(
2009
).
Schizophrenia, “just the facts” 4. Clinical features and conceptualization
.
Schizophrenia Research
,
110
(
1
),
1
23
. https://doi.org/10/ccqnjt
Tanglay
,
O.
,
Young
,
I. M.
,
Dadario
,
N. B.
,
Briggs
,
R. G.
,
Fonseka
,
R. D.
,
Dhanaraj
,
V.
,
Hormovas
,
J.
,
Lin
,
Y.-H.
, &
Sughrue
,
M. E.
(
2022
).
Anatomy and white-matter connections of the precuneus
.
Brain Imaging and Behavior
,
16
(
2
),
574
586
. https://doi.org/10.1007/s11682-021-00529-1
Tao
,
Z.
,
van Gool
,
D.
,
Lammens
,
M.
, &
Dom
,
R.
(
1999
).
Nadph-diaphorase-containing neurons in cortex, subcortical white matter and neostriatum are selectively spared in Alzheimer’s disease
.
Dementia and Geriatric Cognitive Disorders
,
10
(
6
),
460
468
. https://doi.org/10.1159/000017190
Tee
,
J. Y.
, &
Mackay-Sim
,
A.
(
2021
).
Directional persistence of cell migration in schizophrenia patient-derived olfactory cells
.
International Journal of Molecular Sciences
,
22
(
17
),
9177
. https://doi.org/10.3390/ijms22179177
Thomas
,
C.
,
Ye
,
F. Q.
,
Irfanoglu
,
M. O.
,
Modi
,
P.
,
Saleem
,
K. S.
,
Leopold
,
D. A.
, &
Pierpaoli
,
C.
(
2014
).
Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited
.
Proceedings of the National Academy of Sciences of the United States of America
,
111
(
46
),
16574
16579
. https://doi.org/10.1073/pnas.1405672111
Thompson
,
A.
,
Murphy
,
D.
,
Dell’Acqua
,
F.
,
Ecker
,
C.
,
McAlonan
,
G.
,
Howells
,
H.
,
Baron-Cohen
,
S.
,
Lai
,
M.-C.
, &
Lombardo
,
M. V.
(
2017
).
Impaired communication between the motor and somatosensory homunculus is associated with poor manual dexterity in autism spectrum disorder
.
Biological Psychiatry
,
81
(
3
),
211
219
. https://doi.org/10.1016/j.biopsych.2016.06.020
Torres-Reveron
,
J.
, &
Friedlander
,
M. J.
(
2007
).
Properties of persistent postnatal cortical subplate neurons
.
Journal of Neuroscience
,
27
(
37
),
9962
9974
. https://doi.org/10.1523/JNEUROSCI.1536-07.2007
Tournier
,
J. D.
,
Calamante
,
F.
, &
Connelly
,
A.
(
2007
).
Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution
.
NeuroImage
,
35
(
4
),
1459
1472
. https://doi.org/10.1016/j.neuroimage.2007.02.016
Tournier
,
J.-D.
,
Mori
,
S.
, &
Leemans
,
A.
(
2011
).
Diffusion tensor imaging and beyond
.
Magnetic Resonance in Medicine
,
65
(
6
),
1532
1556
. https://doi.org/10/d83xz4
Tournier
,
J.-D.
,
Smith
,
R.
,
Raffelt
,
D.
,
Tabbara
,
R.
,
Dhollander
,
T.
,
Pietsch
,
M.
,
Christiaens
,
D.
,
Jeurissen
,
B.
,
Yeh
,
C.-H.
, &
Connelly
,
A.
(
2019
).
Mrtrix3: A fast, flexible and open software framework for medical image processing and visualisation
.
NeuroImage
,
202
,
116137
. https://doi.org/10.1016/j.neuroimage.2019.116137
Uddin
,
M. N.
,
Figley
,
T. D.
,
Marrie
,
R. A.
,
Figley
,
C. R.
, &
Group
CCOMS Study
. (
2018
).
Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1w/T2w ratios, GRASE-based T1w/T2w ratios and multi-echo GRASE-based myelin water fractions
.
NMR in Biomedicine
,
31
(
3
),
e3868
. https://doi.org/10.1002/nbm.3868
Urquia-Osorio
,
H.
,
Pimentel-Silva
,
L. R.
,
Rezende
,
T. J. R.
,
Almendares-Bonilla
,
E.
,
Yasuda
,
C. L.
,
Concha
,
L.
, &
Cendes
,
F.
(
2022
).
Superficial and deep white matter diffusion abnormalities in focal epilepsies
.
Epilepsia
,
63
(
9
),
2312
2324
. https://doi.org/10.1111/epi.17333
Valverde
,
F.
, &
Facal-Valverde
,
M. V.
(
1988
).
Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: A correlated Golgi and electron microscopic study
.
Journal of Comparative Neurology
,
269
(
2
),
168
192
. https://doi.org/10.1002/cne.902690203
Varriano
,
F.
,
Pascual-Diaz
,
S.
, &
Prats-Galino
,
A.
(
2020
).
Distinct components in the right extended frontal aslant tract mediate language and working memory performance: A tractography-informed VBM study
.
Frontiers in Neuroanatomy
,
14
,
21
. https://doi.org/10.3389/fnana.2020.00021
Vavasour
,
I. M.
,
Laule
,
C.
,
Li
,
D. K.
,
Traboulsee
,
A. L.
, &
MacKay
,
A. L.
(
2011
).
Is the magnetization transfer ratio a marker for myelin in multiple sclerosis
?
Journal of Magnetic Resonance Imaging
,
33
(
3
),
710
718
. https://doi.org/10.1002/jmri.22441
Vázquez
,
A.
,
López-López
,
N.
,
Sánchez
,
A.
,
Houenou
,
J.
,
Poupon
,
C.
,
Mangin
,
J.-F.
,
Hernández
,
C.
, &
Guevara
,
P.
(
2020
).
Ffclust: Fast fiber clustering for large tractography datasets for a detailed study of brain connectivity
.
NeuroImage
,
220
,
117070
. https://doi.org/10/gm5qxm
Veale
,
T.
,
Malone
,
I. B.
,
Poole
,
T.
,
Parker
,
T. D.
,
Slattery
,
C. F.
,
Paterson
,
R. W.
,
Foulkes
,
A. J. M.
,
Thomas
,
D. L.
,
Schott
,
J. M.
,
Zhang
,
H.
,
Fox
,
N. C.
, &
Cash
,
D. M.
(
2021
).
Loss and dispersion of superficial white matter in Alzheimer’s disease: A diffusion MRI study
.
Brain Communications
,
3
(
4
),
fcab272
. https://doi.org/10.1093/braincomms/fcab272
Vergani
,
F.
,
Lacerda
,
L.
,
Martino
,
J.
,
Attems
,
J.
,
Morris
,
C.
,
Mitchell
,
P.
,
de Schotten
,
M. T.
, &
Dell’Acqua
,
F.
(
2014
).
White matter connections of the supplementary motor area in humans
.
Journal of Neurology, Neurosurgery & Psychiatry
,
85
(
12
),
1377
1385
. https://doi.org/10/f6q2bk
Vergani
,
F.
,
Mahmood
,
S.
,
Morris
,
C. M.
,
Mitchell
,
P.
, &
Forkel
,
S. J.
(
2014
).
Intralobar fibres of the occipital lobe: A post mortem dissection study
.
Cortex
,
56
,
145
156
. https://doi.org/10.1016/j.cortex.2014.03.002
Wachinger
,
C.
,
Golland
,
P.
,
Kremen
,
W.
,
Fischl
,
B.
, &
Reuter
,
M.
(
2015
).
Brainprint: A discriminative characterization of brain morphology
.
NeuroImage
,
109
,
232
248
. https://doi.org/10.1016/j.neuroimage.2015.01.032
Wang
,
P.
,
Wang
,
J.
,
Michael
,
A.
,
Wang
,
Z.
,
Klugah-Brown
,
B.
,
Meng
,
C.
, &
Biswal
,
B. B.
(
2022
).
White matter functional connectivity in resting-state fMRI: Robustness, reliability, and relationships to gray matter
.
Cerebral Cortex
,
32
(
8
),
1547
1559
. https://doi.org/10.1093/cercor/bhab181
Wang
,
S.
,
Zhang
,
F.
,
Huang
,
P.
,
Hong
,
H.
,
Jiaerken
,
Y.
,
Yu
,
X.
,
Zhang
,
R.
,
Zeng
,
Q.
,
Zhang
,
Y.
,
Kikinis
,
R.
,
Rathi
,
Y.
,
Makris
,
N.
,
Lou
,
M.
,
Pasternak
,
O.
,
Zhang
,
M.
, &
O’Donnell
,
L. J.
(
2022
).
Superficial white matter microstructure affects processing speed in cerebral small vessel disease
.
Human Brain Mapping
,
43
(
17
),
5310
5325
. https://doi.org/10.1002/hbm.26004
Wassermann
,
D.
,
Makris
,
N.
,
Rathi
,
Y.
,
Shenton
,
M.
,
Kikinis
,
R.
,
Kubicki
,
M.
, &
Westin
,
C.-F.
(
2013
).
On describing human white matter anatomy: The white matter query language
.
Medical Image Computing and Computer-Assisted Intervention
,
16
(
Pt 1
),
647
654
. https://doi.org/10.1007/978-3-642-40811-3_81
Wen
,
H.
,
Liu
,
Y.
,
Wang
,
J.
,
Rekik
,
I.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Tian
,
H.
,
Peng
,
Y.
, &
He
,
H.
(
2016
).
Combining tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome children
.
Human Brain Mapping
,
37
(
5
),
1903
1919
. https://doi.org/10.1002/hbm.23146
Winston
,
G. P.
,
Vos
,
S. B.
,
Caldairou
,
B.
,
Hong
,
S.-J.
,
Czech
,
M.
,
Wood
,
T. C.
,
Wastling
,
S. J.
,
Barker
,
G. J.
,
Bernhardt
,
B. C.
,
Bernasconi
,
N.
,
Duncan
,
J. S.
, &
Bernasconi
,
A.
(
2020
).
Microstructural imaging in temporal lobe epilepsy: Diffusion imaging changes relate to reduced neurite density
.
NeuroImage: Clinical
,
26
,
102231
. https://doi.org/10.1016/j.nicl.2020.102231
Wu
,
E. X.
, &
Cheung
,
M. M.
(
2010
).
Mr diffusion kurtosis imaging for neural tissue characterization
.
NMR in Biomedicine
,
23
(
7
),
836
848
. https://doi.org/10.1002/nbm.1506
Wu
,
M.
,
Kumar
,
A.
, &
Yang
,
S.
(
2016
).
Development and aging of superficial white matter myelin from young adulthood to old age: Mapping by vertex-based surface statistics (VBSS)
.
Human Brain Mapping
,
37
(
5
),
1759
1769
. https://doi.org/10/gjjwg6
Wu
,
M.
,
Lu
,
L. H.
,
Lowes
,
A.
,
Yang
,
S.
,
Passarotti
,
A. M.
,
Zhou
,
X. J.
, &
Pavuluri
,
M. N.
(
2014
).
Development of superficial white matter and its structural interplay with cortical gray matter in children and adolescents
.
Human Brain Mapping
,
35
(
6
),
2806
2816
. https://doi.org/10.1002/hbm.22368
Wu
,
Y.
,
Feng
,
Y.
,
Shen
,
D.
, &
Yap
,
P.-T.
(
2018
).
A multi-tissue global estimation framework for asymmetric fiber orientation distributions
. In
A. F.
Frangi
,
J. A.
Schnabel
,
C.
Davatzikos
,
C.
Alberola-López
, &
G.
Fichtinger
(Eds.),
Medical image computing and computer assisted intervention: MICCAI 2018
(pp.
45
52
).
Springer International Publishing
. https://doi.org/10.1007/978-3-030-00931-1_6
Wu
,
Y.
,
Hong
,
Y.
,
Ahmad
,
S.
, &
Yap
,
P.-T.
(
2021
).
Active cortex iractography
.
Medical Image Computing and Computer-Assisted Intervention
,
12907
,
467
476
. https://doi.org/10.1007/978-3-030-87234-2_44
Wu
,
Y.
,
Sun
,
D.
,
Wang
,
Y.
,
Wang
,
Y.
, &
Wang
,
Y.
(
2016
).
Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection
.
Brain Research
,
1646
,
152
159
. https://doi.org/10.1016/j.brainres.2016.05.046
Wysiadecki
,
G.
,
Clarke
,
E.
,
Polguj
,
M.
,
Haładaj
,
R.
,
Żytkowski
,
A.
, &
Topol
,
M.
(
2019
).
Klingler’s method of brain dissection: Review of the technique including its usefulness in practical neuroanatomy teaching, neurosurgery and neuroimaging
.
Folia Morphologica
,
78
(
3
),
455
466
. https://doi.org/10.5603/FM.a2018.0113
Xu
,
M.
,
Guo
,
Y.
,
Cheng
,
J.
,
Xue
,
K.
,
Yang
,
M.
,
Song
,
X.
,
Feng
,
Y.
, &
Cheng
,
J.
(
2021
).
Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping
.
NeuroImage: Clinical
,
31
,
102736
. https://doi.org/10.1016/j.nicl.2021.102736
Xue
,
T.
,
Zhang
,
F.
,
Zhang
,
C.
,
Chen
,
Y.
,
Song
,
Y.
,
Golby
,
A. J.
,
Makris
,
N.
,
Rathi
,
Y.
,
Cai
,
W.
, &
O’Donnell
,
L. J.
(
2023
).
Superficial white matter analysis: An efficient point-cloud-based deep learning framework with supervised contrastive learning for consistent tractography parcellation across populations and dMRI acquisitions
.
Medical Image Analysis
,
85
,
102759
. https://doi.org/10.1016/j.media.2023.102759
Yakovlev
,
P. I.
(
1967
).
The myelogenetic cycles of regional maturation of the brain
. In
Regional development of the brain in early life
.
Council for International Organizations of Medical Sciences
.
Yang
,
Y.
,
Fung
,
S. J.
,
Rothwell
,
A.
,
Tianmei
,
S.
, &
Weickert
,
C. S.
(
2011
).
Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia
.
Biological Psychiatry
,
69
(
1
),
63
70
. https://doi.org/10/dpdg59
Yao
,
J.
,
Tendler
,
B. C.
,
Zhou
,
Z.
,
Lei
,
H.
,
Zhang
,
L.
,
Bao
,
A.
,
Zhong
,
J.
,
Miller
,
K. L.
, &
He
,
H.
(
2023
).
Both noise-floor and tissue compartment difference in diffusivity contribute to FA dependence on b-value in diffusion MRI
.
Human Brain Mapping
,
44
(
4
),
1371
1388
. https://doi.org/10.1002/hbm.26121
Yarnykh
,
V. L.
(
2002
).
Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: Theory and clinical applications
.
Magnetic Resonance in Medicine
,
47
(
5
),
929
939
. https://doi.org/10.1002/mrm.10120
Yeatman
,
J. D.
,
Rauschecker
,
A. M.
, &
Wandell
,
B. A.
(
2013
).
Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections
.
Brain and Language
,
125
(
2
),
146
155
. https://doi.org/10.1016/j.bandl.2012.04.010
Yeatman
,
J. D.
,
Weiner
,
K. S.
,
Pestilli
,
F.
,
Rokem
,
A.
,
Mezer
,
A.
, &
Wandell
,
B. A.
(
2014
).
The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements
.
Proceedings of the National Academy of Sciences of the United States of America
,
111
(
48
),
E5214
E5223
. https://doi.org/10.1073/pnas.1418503111
Yendiki
,
A.
,
Aggarwal
,
M.
,
Axer
,
M.
,
Howard
,
A. F. D.
,
van Walsum
,
A.-M. v. C.
, &
Haber
,
S. N.
(
2022
).
Post mortem mapping of connectional anatomy for the validation of diffusion MRI
.
NeuroImage
,
256
,
119146
. https://doi.org/10.1016/j.neuroimage.2022.119146
Yuan
,
S.
,
Liu
,
M.
,
Kim
,
S.
,
Yang
,
J.
,
Barkovich
,
A. J.
,
Xu
,
D.
, &
Kim
,
H.
(
2023
).
Cyto/myeloarchitecture of cortical gray matter and superficial white matter in early neurodevelopment: Multimodal MRI study in preterm neonates
.
Cerebral Cortex
,
33
(
2
),
357
373
. https://doi.org/10.1093/cercor/bhac071
Zhang
,
F.
,
Wu
,
Y.
,
Norton
,
I.
,
Rigolo
,
L.
,
Rathi
,
Y.
,
Makris
,
N.
, &
O’Donnell
,
L. J.
(
2018
).
An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan
.
NeuroImage
,
179
,
429
447
. https://doi.org/10/gfwjzw
Zhang
,
H.
,
Schneider
,
T.
,
Wheeler-Kingshott
,
C. A.
, &
Alexander
,
D. C.
(
2012
).
NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain
.
NeuroImage
,
61
(
4
),
1000
1016
. https://doi.org/10.1016/j.neuroimage.2012.03.072
Zhang
,
S.
,
Wang
,
Y.
,
Deng
,
F.
,
Zhong
,
S.
,
Chen
,
L.
,
Luo
,
X.
,
Qiu
,
S.
,
Chen
,
P.
,
Chen
,
G.
,
Hu
,
H.
,
Lai
,
S.
,
Huang
,
H.
,
Jia
,
Y.
,
Huang
,
L.
, &
Huang
,
R.
(
2018
).
Disruption of superficial white matter in the emotion regulation network in bipolar disorder
.
NeuroImage: Clinical
,
20
,
875
882
. https://doi.org/10.1016/j.nicl.2018.09.024
Zhang
,
Y.
,
Huang
,
B.
,
Chen
,
Q.
,
Wang
,
L.
,
Zhang
,
L.
,
Nie
,
K.
,
Huang
,
Q.
, &
Huang
,
R.
(
2022
).
Altered microstructural properties of superficial white matter in patients with Parkinson’s disease
.
Brain Imaging and Behavior
,
16
(
1
),
476
491
. https://doi.org/10.1007/s11682-021-00522-8
Zikopoulos
,
B.
, &
Barbas
,
H.
(
2010
).
Changes in prefrontal axons may disrupt the network in autism
.
The Journal of Neuroscience
,
30
(
44
),
14595
14609
. https://doi.org/10.1523/JNEUROSCI.2257-10.2010
Zisis
,
E.
,
Keller
,
D.
,
Kanari
,
L.
,
Arnaudon
,
A.
,
Gevaert
,
M.
,
Delemontex
,
T.
,
Coste
,
B.
,
Foni
,
A.
,
Abdellah
,
M.
,
Calì
,
C.
,
Hess
,
K.
,
Magistretti
,
P. J.
,
Schürmann
,
F.
, &
Markram
,
H.
(
2021
).
Digital reconstruction of the neuro-glia-vascular architecture
.
Cerebral Cortex
,
31
(
12
),
5686
5703
. https://doi.org/10.1093/cercor/bhab254
Zouridakis
,
A.
,
Ayala
,
I.
,
Minogue
,
G.
,
Kawles
,
A.
,
Keszycki
,
R.
,
Macomber
,
A.
,
Bigio
,
E. H.
,
Geula
,
C.
,
Mesulam
,
M.-M.
, &
Gefen
,
T.
(
2023
).
Shades of gray in human white matter
.
Journal of Comparative Neurology
,
531
(
18
),
2109
2120
. https://doi.org/10.1002/cne.25512

Author notes

*

These authors contributed equally

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.