Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Gang Chen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Imaging Neuroscience (2025) 3: imag_a_00447.
Published: 10 February 2025
FIGURES
| View All (8)
Abstract
View articletitled, Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control
View
PDF
for article titled, Complementary benefits of multivariate and hierarchical models for identifying individual differences in cognitive control
Understanding individual differences in cognitive control is a central goal in psychology and neuroscience. Reliably measuring these differences, however, has proven extremely challenging, at least when using standard measures in cognitive neuroscience such as response times or task-based fMRI activity. While prior work has pinpointed the source of the issue—the vast amount of cross-trial variability within these measures—solutions remain elusive. Here, we propose one potential way forward: an analytic framework that combines hierarchical Bayesian modeling with multivariate decoding of trial-level fMRI data. Using this framework and longitudinal data from the Dual Mechanisms of Cognitive Control project, we estimated individuals’ neural responses associated with cognitive control within a color-word Stroop task, then assessed the reliability of these individuals’ responses across a time interval of several months. We show that in many prefrontal and parietal brain regions, test–retest reliability was near maximal, and that only hierarchical models were able to reveal this state of affairs. Further, when compared to traditional univariate contrasts, multivariate decoding enabled individual-level correlations to be estimated with significantly greater precision. We specifically link these improvements in precision to the optimized suppression of cross-trial variability in decoding. Together, these findings not only indicate that cognitive control-related neural responses individuate people in a highly stable manner across time, but also suggest that integrating hierarchical and multivariate models provides a powerful approach for investigating individual differences in cognitive control, one that can effectively address the issue of high-variability measures.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Imaging Neuroscience (2024) 2: 1–52.
Published: 12 November 2024
FIGURES
| View All (25)
Abstract
View articletitled, Processing, evaluating, and understanding FMRI data with afni_proc.py
View
PDF
for article titled, Processing, evaluating, and understanding FMRI data with afni_proc.py
FMRI data are noisy, complicated to acquire, and typically go through many steps of processing before they are used in a study or clinical practice. Being able to visualize and understand the data from the start through the completion of processing, while being confident that each intermediate step was successful, is challenging. AFNI’s afni_proc.py is a tool to create and run a processing pipeline for FMRI data. With its flexible features, afni_proc.py allows users to both control and evaluate their processing at a detailed level. It has been designed to keep users informed about all processing steps: it does not just process the data, but also first outputs a fully commented processing script that the users can read, query, interpret, and refer back to. Having this full provenance is important for being able to understand each step of processing; it also promotes transparency and reproducibility by keeping the record of individual-level processing and modeling specifics in a single, shareable place. Additionally, afni_proc.py creates pipelines that contain several automatic self-checks for potential problems during runtime. The output directory contains a dictionary of relevant quantities that can be programmatically queried for potential issues and a systematic, interactive quality control (QC) HTML. All of these features help users evaluate and understand their data and processing in detail. We describe these and other aspects of afni_proc.py here using a set of task-based and resting-state FMRI example commands.
Journal Articles
Publisher: Journals Gateway
Imaging Neuroscience (2024) 2: 1–39.
Published: 02 August 2024
FIGURES
| View All (20)
Abstract
View articletitled, A Set of FMRI Quality Control Tools in AFNI: Systematic, in-depth, and interactive QC with afni_proc.py and more
View
PDF
for article titled, A Set of FMRI Quality Control Tools in AFNI: Systematic, in-depth, and interactive QC with afni_proc.py and more
Quality control (QC) assessment is a vital part of FMRI processing and analysis, and a typically underdiscussed aspect of reproducibility. This includes checking datasets at their very earliest stages (acquisition and conversion) through their processing steps (e.g., alignment and motion correction) to regression modeling (correct stimuli, no collinearity, valid fits, enough degrees of freedom, etc.) for each subject. There are a wide variety of features to verify throughout any single-subject processing pipeline, both quantitatively and qualitatively. We present several FMRI preprocessing QC features available in the AFNI toolbox, many of which are automatically generated by the pipeline-creation tool, afni_proc.py . These items include a modular HTML document that covers full single-subject processing from the raw data through statistical modeling, several review scripts in the results directory of processed data, and command line tools for identifying subjects with one or more quantitative properties across a group (such as triaging warnings, making exclusion criteria, or creating informational tables). The HTML itself contains several buttons that efficiently facilitate interactive investigations into the data, when deeper checks are needed beyond the systematic images. The pages are linkable, so that users can evaluate individual items across a group, for increased sensitivity to differences (e.g., in alignment or regression modeling images). Finally, the QC document contains rating buttons for each “QC block,” as well as comment fields for each, to facilitate both saving and sharing the evaluations. This increases the specificity of QC, as well as its shareability, as these files can be shared with others and potentially uploaded into repositories, promoting transparency and open science. We describe the features and applications of these QC tools for FMRI.