Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
George C. O’Neill
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Imaging Neuroscience (2025) 3: imag_a_00495.
Published: 03 March 2025
FIGURES
| View All (5)
Abstract
View articletitled, Combining video telemetry and wearable MEG for naturalistic imaging
View
PDF
for article titled, Combining video telemetry and wearable MEG for naturalistic imaging
Neuroimaging studies have typically relied on rigorously controlled experimental paradigms to probe cognition, in which movement is restricted, primitive, an afterthought or merely used to indicate a subject’s choice. Whilst powerful, these paradigms do not often resemble how we behave in everyday life, so a new generation of ecologically valid experiments are being developed. Magnetoencephalography (MEG) measures neural activity by sensing extracranial magnetic fields. It has recently been transformed from a large, static imaging modality to a wearable method where participants can move freely. This makes wearable MEG systems a prime candidate for naturalistic experiments going forward. However, these experiments will also require novel methods to capture and integrate information about behaviour executed during neuroimaging, and it is not yet clear how this could be achieved. Here, we use video recordings of multi-limb dance moves, processed with open-source machine learning methods, to automatically identify time windows of interest in concurrent, wearable MEG data. In a first step, we compare a traditional, block-designed analysis of limb movements, where the times of interest are based on stimulus presentation, to an analysis pipeline based on hidden Markov model states derived from the video telemetry. Next, we show that it is possible to identify discrete modes of neuronal activity related to specific limbs and body posture by processing the participants’ choreographed movement in a dancing paradigm. This demonstrates the potential of combining video telemetry with mobile magnetoencephalography and other legacy imaging methods for future studies of complex and naturalistic behaviours.
Includes: Supplementary data
Journal Articles
Mansoureh Fahimi Hnazaee, Matthias Sure, George C. O’Neill, Gaetano Leogrande, Alfons Schnitzler ...
Publisher: Journals Gateway
Imaging Neuroscience (2023) 1: 1–22.
Published: 07 November 2023
FIGURES
| View All (12)
Abstract
View articletitled, Combining magnetoencephalography with telemetric streaming of intracranial recordings and deep brain stimulation—A feasibility study
View
PDF
for article titled, Combining magnetoencephalography with telemetric streaming of intracranial recordings and deep brain stimulation—A feasibility study
The combination of subcortical Local Field Potential (LFP) recordings and stimulation with Magnetoencephalography (MEG) in Deep Brain Stimulation (DBS) patients enables the investigation of cortico-subcortical communication patterns and provides insights into DBS mechanisms. Until now, these recordings have been carried out in post-surgical patients with externalised leads. However, a new generation of telemetric stimulators makes it possible to record and stream LFP data in chronically implanted patients. Nevertheless, whether such streaming can be combined with MEG has not been tested. In the present study, we tested the most commonly implanted telemetric stimulator—Medtronic Percept PC with a phantom in three different MEG systems: two cryogenic scanners (CTF and MEGIN) and an experimental Optically Pumped Magnetometry (OPM)-based system. We found that when used in combination with the new SenSight segmented leads, Percept PC telemetric streaming only generates band-limited interference in the MEG at 123 Hz and harmonics. However, the “legacy streaming mode” used with older lead models generates multiple, dense artefact peaks in the physiological range of interest (below 50 Hz). The effect of stimulation on MEG critically depends on whether it is done in bipolar (between two contacts on the lead) or monopolar (between a lead contact and the stimulator case) mode. Monopolar DBS creates severe interference in the MEG as previously reported. However, we found that the OPM system is more resilient to this interference and could provide artefact-free measurements, at least for limited frequency ranges. A resting measurement in the MEGIN system from a Parkinson’s patient implanted with Percept PC and subthalamic SenSight leads revealed artefact patterns consistent with our phantom recordings. Moreover, analysis of LFP-MEG coherence in this patient showed oscillatory coherent networks consistent in their frequency and topography with those described in published group studies done with externalised leads. In conclusion, Percept PC telemetric streaming with SenSight leads is compatible with MEG. Furthermore, OPM sensors could provide additional new opportunities for studying DBS effects.
Includes: Supplementary data