Abstract

The concept of morphological computation holds that the body of an agent can, under certain circumstances, exploit the interaction with the environment to achieve useful behavior, potentially reducing the computational burden of the brain/controller. The conditions under which such phenomenon arises are, however, unclear. We hypothesize that morphological computation will be facilitated by body plans with appropriate geometric, material, and growth properties, while it will be hindered by other body plans in which one or more of these three properties is not well suited to the task. We test this by evolving the geometries and growth processes of soft robots, with either manually-set softer or stiffer material properties. Results support our hypothesis: we find that for the task investigated, evolved softer robots achieve better performances with simpler growth processes than evolved stiffer ones. We hold that the softer robots succeed because they are better able to exploit morphological computation. This four-way interaction among geometry, growth, material properties and morphological computation is but one example phenomenon that can be investigated using the system here introduced, that could enable future studies on the evolution and development of generic soft-bodied creatures.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.