Many origin of life theories argue that molecular self-organization explains the spontaneous emergence of structural and dynamical constraints. However, the preservation of these constraints over time is not well-explained because of the self-undermining and self-limiting nature of these same processes. A process called autogenesis has been proposed in which a synergetic coupling between self-organized processes preserves the constraints thereby accumulated. This paper presents a computer simulation of this process (the Autogenic Automaton) and compares its behavior to the same self-organizing processes when uncoupled. We demonstrate that this coupling produces a second-order constraint that can both resist dissipation and become replicated in new substrates over time.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.