In this paper, we study how a swarm of robots adapts over time to solve a collaborative task using a distributed Embodied Evolutionary approach, where each robot runs an evolutionary algorithm and they locally exchange genomes and fitness values. Particularly, we study a collaborative foraging task, where the robots are rewarded for collecting food items that are too heavy to be collected individually and need at least two robots to be collected. Further, the robots also need to display a signal matching the color of the item with an additional effector. Our experiments show that the distributed algorithm is able to evolve swarm behavior to collect items cooperatively. The experiments also reveal that effective cooperation is evolved due mostly to the ability of robots to jointly reach food items, while learning to display the right color that matches the item is done suboptimally. However, a closer analysis shows that, without a mechanism to avoid neglecting any kind of item, robots collect all of them, which means that there is some degree of learning to choose the right value for the color effector depending on the situation.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.