Spatial resolution is relevant for many processes in population dynamics because it may give rise to heterogeneity. Simulating the effect of space in two or three dimensions is computationally costly. Furthermore, in Euclidean space, the notion of heterogeneity is complemented by neighbourhood correlations. In this paper, we use an infinite-dimensional simplex as a minimal model of space in which heterogeneity is realized, but neighbourhood is trivial and study the coexistence of viral traits in a SIRS - model. As a function of the migration parameter, multiple regimes are observed. We further discuss the relevance of minimal models for decision support.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit