Abstract

In this contribution, we propose a system-level compartmental population dynamics model of tumour cells that interact with the patient (innate) immune system under the impact of radiation therapy (RT). The resulting in silico - model enables us to analyse the system-level impact of radiation on the tumour ecosystem.

The Tumour Control Probability (TCP) was calculated for varying conditions concerning therapy fractionation schemes, radio-sensitivity of tumour sub-clones, tumour population doubling time, repair speed and immunological elimination parameters. The simulations exhibit a therapeutic benefit when applying the initial 3 fractions in an interval of 2 days instead of daily delivered fractions. This effect disappears for fast-growing tumours and in the case of incomplete repair. The results suggest some optimisation potential for combined hyperthermia-radiotherapy.

Regarding the sensitivity of the proposed model, cellular repair of radiation-induced damages is a key factor for tumour control. In contrast to this, the radio-sensitivity of immune cells does not influence the TCP as long as the radio-sensitivity is higher than those for tumour cells. The influence of the tumour sub-clone structure is small (if no competition is included). This work demonstrates the usefulness of in silico – modelling for identifying optimisation potentials.

This content is only available as a PDF.