Abstract
The design of mechanisms that encourage pro-social behaviours in populations of self-regarding agents is recognised as a major theoretical challenge within several areas of social, life and engineering sciences. When interference from external parties is considered, several heuristics have been identified as capable of engineering a desired collective behaviour at a minimal cost. However, these studies neglect the diverse nature of contexts and social structures that characterise real-world populations. Here we analyse the impact of diversity by means of scale-free interaction networks with high and low levels of clustering, and test various interference mechanisms using simulations of agents facing a cooperative dilemma. Our results show that interference on scale-free networks is not trivial and that distinct levels of clustering react differently to each interference mechanism. As such, we argue that no tailored response fits all scale-free networks and present which mechanisms are more efficient at fostering cooperation in both types of networks. Finally, we discuss the pitfalls of considering reckless interference mechanisms.