Abstract

We train embodied agents to play Visual Hide and Seek to study the relationship between agent behaviors and environmental complexity. In Visual Hide and Seek, a prey must navigate in a simulated environment in order to avoid capture from a predator, only relying on first-person visual observations. By probing different environmental factors, agents exhibit diverse hiding strategies and even the knowledge of its own visibility to other agents in the scene. Furthermore, we quantitatively analyze how agent weaknesses, such as slower speed, affect the learned policy. Our results suggest that, although agent weakness makes the learning problem more challenging, they also cause more useful features to be learned. Our project website is available at http://www.cs.columbia.edu/bchen/visualhideseek/.

This content is only available as a PDF.