Abstract

Artificial Life has a long tradition of studying the interaction between learning and evolution. And, thanks to the increase in the use of individual learning techniques in Artificial Intelligence, there has been a recent revival of work combining individual and evolutionary learning. Despite the breadth of work in this area, the exact trade-offs between these two forms of learning remain unclear. In this work, we systematically examine the effect of task difficulty, the individual learning approach, and the form of inheritance on the performance of the population across different combinations of learning and evolution. We analyze in depth the conditions in which hybrid strategies that combine lifetime and evolutionary learning outperform either lifetime or evolutionary learning in isolation. We also discuss the importance of these results in both a biological and algorithmic context.

This content is only available as a PDF.