Abstract
Reaction-Diffusion (RD) systems provide a computational framework that governs many pattern formation processes in nature. Current RD system design practices boil down to trial-and-error parameter search. We propose a differentiable optimization method for learning the RD system parameters to perform example-based texture synthesis on a 2D plane. We do this by representing the RD system as a variant of Neural Cellular Automata and using task-specific differentiable loss functions. RD systems generated by our method exhibit robust, non-trivial “life-like” behavior.
This content is only available as a PDF.
© 2021 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license
2021
Massachusetts Institute of Technology
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.